OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1958–1963

Amplitude-only, passive, broadband, optical spatial cloaking of very large objects

John C. Howell, J. Benjamin Howell, and Joseph S. Choi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1958-1963 (2014)
http://dx.doi.org/10.1364/AO.53.001958


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate three amplitude cloaks that can hide very large spatial objects over the entire visible spectrum using only passive, off-the-shelf optics. The cloaked region for all of the devices exceeds 106mm3, with the largest exceeding 108mm3. Although unidirectional, these cloaks can hide the cloaked object, even if the object is transversely illuminated or self-illuminated. Due to the small usable solid angle, but simple scaling, these cloaks may be of value in hiding small field-of-view objects such as mid- to high-earth orbit satellites from earth-based observation. Active phase front manipulation can also make these cloaks invisible to some forms of image homodyning.

© 2014 Optical Society of America

OCIS Codes
(220.2740) Optical design and fabrication : Geometric optical design
(350.4600) Other areas of optics : Optical engineering
(110.3010) Imaging systems : Image reconstruction techniques
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

History
Original Manuscript: December 26, 2013
Manuscript Accepted: February 5, 2014
Published: March 20, 2014

Citation
John C. Howell, J. Benjamin Howell, and Joseph S. Choi, "Amplitude-only, passive, broadband, optical spatial cloaking of very large objects," Appl. Opt. 53, 1958-1963 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  3. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]
  6. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [CrossRef]
  7. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008). [CrossRef]
  8. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef]
  9. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12, 25–28 (2013). [CrossRef]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  13. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009). [CrossRef]
  14. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011). [CrossRef]
  15. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012). [CrossRef]
  16. R. Fleury, J. Soric, and A. Alu, “Physical bounds on absorption and scattering for cloaked sensors,” arXiv:1309.3619 (2013).
  17. R. Houdin, The Secrets of Stage Conjuring (Wildside, 2008).
  18. “Invisibility,” http://www.youtube.com/watch?v=RwgIr06OJLo .
  19. “Mirrors Tricks of Magic Shows at the Science and Technology Museum MadaTech—12,” http://www.youtube.com/watch?v=_hF8xuPShsM .
  20. E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785–792 (1993). [CrossRef]
  21. J. C. Howell and J. B. Howell, “Simple, broadband, optical spatial cloaking of very large objects,” Phys. Opt., arXiv:1306.0863 (2013).
  22. “Human-scale invisibility cloak unveiled,” MIT Technology Review (June6, 2013).
  23. A. Boyle, “This ‘Invisibility Cloak’ Could Conceal Satellites or Hide Your Kids,” (NBC News, 2013).
  24. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited