Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetically induced grating in the microwave-driven four-level atomic systems

Not Accessible

Your library or personal account may give you access

Abstract

A new scheme to investigate an electromagnetically induced grating in an N-type configuration in the presence of a strong-standing coupling field, additional coherent fields, and microwave driven fields is presented. By considering the coherent population trapping (CPT) condition in a four-level microwave driven N-type atomic system, a novel nonlinear optical storage is obtained via linear absorption vanishing and giant Kerr nonlinearity during light propagation. It is revealed that nonlinear properties in this atomic medium are maximum in the CPT condition, and these nonlinear properties could be affected and modulated by means of a microwave driven field. In this condition high-phase modulated diffraction efficiency is attained. The diffraction pattern is sensitive to variables of the phase and amplitude of microwave field. Consequently one can control the efficiency of different orders of grating more conveniently. The first-order diffraction efficiency of the grating, about 45%, can be obtained by choosing optimum values for the phase and amplitude of the microwave field. It is shown that the phase and modulation grating could be controlled effectively by atomic field-radiation parameters such as the interaction length L of atomic samples and applied field detunings. It has been noted that a novel fast communication device could be obtained at the zero absorption point and on the superluminal light level.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(11) 2879-2884 (2014)

Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems

Rasoul Sadighi-Bonabi and Tayebeh Naseri
Appl. Opt. 54(11) 3484-3490 (2015)

Efficient electromagnetically induced phase grating via quantum interference in a four-level N-type atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(10) 2430-2437 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.