Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of controllable rotating petal-like modes using composited Dammann vortex gratings

Not Accessible

Your library or personal account may give you access

Abstract

A new type of diffractive optical element, called a composited Dammann vortex grating (CDVG), is proposed for generation of multiple equal-energy controllable rotating petal-like modes extra cavity. As an example, it is shown that a petal-like mode is well generated for each nonzero diffraction order by a binary pure-phase 1×7 CDVG. Mode decomposition is digitally implemented by a programmable spatial light modulator (SLM), and the experimental results show that those generated petal-like patterns are in high mode purity (90%) for all six different nonzero orders. Also, controllable rotating petal-like modes are demonstrated when the CDVG is digitally implemented by the programmable SLM, which provides the possibility to quantitatively control the rotation rate of this type of optical tweezers. Furthermore, tunable petal-like modes are also demonstrated experimentally by introducing a vortex incident field with different topological charges.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional Dammann vortex array with tunable topological charge

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang
Appl. Opt. 51(13) 2485-2490 (2012)

Generation of dipole vortex array using spiral Dammann zone plates

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang
Appl. Opt. 51(28) 6799-6804 (2012)

Supplementary Material (6)

Media 1: MOV (127 KB)     
Media 2: MOV (119 KB)     
Media 3: MOV (115 KB)     
Media 4: MOV (109 KB)     
Media 5: MOV (127 KB)     
Media 6: MOV (122 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved