OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 7, Iss. 4 — Apr. 1, 1968
  • pp: 651–655

Computer Generated Spatial Filters for Coherent Optical Data Processing

A. W. Lohmann and D. P. Paris  »View Author Affiliations

Applied Optics, Vol. 7, Issue 4, pp. 651-655 (1968)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The setup used in many optical data processing schemes is a coherent optical image forming system. The most important element in this setup is the complex spatial filter. It can perform a large variety of linear operations upon the object or input. In general, it is difficult to produce complex filters, since both amplitude transmission and phase delay may vary across the filter plane in a complicated manner. Our own filters which are very similar to binary holograms, consist of many little transparent rectangles on opaque background. They can easily be drawn on a large scale by a computer-guided plotter, and then photographically reduced in size. We show that our filters, despite containing only amplitude values zero and one, can perform any data processing operation which could be performed by any complex filter. After explaining the principle, we present three groups of applications. First, we describe new versions of some classical methods: schlieren observation and phase contrast. Next, we report on spatial filters which perform differential operations upon the object in order to enhance gradients or corners. Finally, we use our binary filters for signal detection.

© 1968 Optical Society of America

Original Manuscript: November 16, 1967
Published: April 1, 1968

A. W. Lohmann and D. P. Paris, "Computer Generated Spatial Filters for Coherent Optical Data Processing," Appl. Opt. 7, 651-655 (1968)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tsujiuchi, in Progress in Optics, E. Wolf, Ed. (John Wiley & Sons, Inc., New York, 1963), Vol. 2, p. 133. [CrossRef]
  2. E. L. O’Neill, Inst. Radio Eng. Trans. IT-2, 56 (1956).
  3. A. Vander Lugt, Opt. Acta15(1968) to be published.
  4. B. R. Brown, A. W. Lohmann, Appl. Opt. 6, 967 (1966). [CrossRef]
  5. A. W. Lohmann, D. P. Paris, H. W. Werlich, Appl. Opt. 6, 1139 (1967). [CrossRef] [PubMed]
  6. A. W. Lohmann, D. P. Paris, Appl. Opt. 6, 1739 (1967). [CrossRef] [PubMed]
  7. D. Hauk, A. Lohmann, Optik 15, 275 (1958); G. Harburn, K. Walkley, C. A. Taylor, Nature 205, 1096 (1965). [CrossRef]
  8. H. Wolter, Ann. Phys. 7, 341 (1950); A. Kastler, Rev. Opt. 29, 308 (1950); S. Lowenthal, Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967). [CrossRef]
  9. E. Menzel, Opt. 5, 385 (1949).
  10. P. Jacquinot, B. Roizen-Dossier, in Progress in Optics, E. Wolf, Ed. (John Wiley & Sons, Inc., New York, 1964), Vol. 3, p. 29. [CrossRef]
  11. M. Françon, C. R. Acad. Sci. Paris 233, 1176 (1951); Rev. Opt. 31, 65 (1952).
  12. G. Nomarski, Brev. Fr., Nr. 1057 486, 1059 123 (May1952); J. Phys. 15, 265 (1954); A. Lohmann, Opt. 11, 478 (1954).
  13. J. E. Rhodes, J. Opt. Soc. Amer. 43, 848 (1953). [CrossRef]
  14. E. A. Trabka, P. G. Roetling, J. Opt. Soc. Amer. 52, 454 (1962). [CrossRef]
  15. S. Lowenthal, Y. Belvaux, C. R. Acad. Sci. Paris B262, 413 (1966); Opt. Acta 14, 245 (1967).
  16. A. Maréchal, P. Croce, C. R. Acad. Sci. Paris 237, 607 (1953).
  17. P. F. Mueller, G. O. Reynolds, J. Opt. Soc. Amer. 56, 1438A (1966); J. Opt. Soc. Amer. 57, 1338 (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited