Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial Resolution of the Volume Emission Coefficient in Strongly Self-Absorbing Sources of Cylindrical Symmetry

Not Accessible

Your library or personal account may give you access

Abstract

It is shown that the equations relating the radial profiles of the volume emission and absorption coefficients to the transmission and emitted intensity profiles in self-absorbing cylindrically symmetric sources, can be written in such a way that the problem of spatially resolving the volume emission coefficient gives rise to a Volterra integral equation of the second kind in a standard form. The theory of equations of this type is invoked to show the formal convergence of an iterative solution to the problem, subject only to a finite transmission and bounded slope to the absorption coefficient. A prescription for applying this iterative procedure is given that involves a series of numerical integrations and Abel inversions, and the convergence of some numerical solutions is demonstrated.

© 1968 Optical Society of America

Full Article  |  PDF Article
More Like This
Determination of Self-Broadening Coefficients of CO, Using CO2 Laser Radiation at 10.6 μ

R. R. Patty, E. R. Manring, and J. A. Gardner
Appl. Opt. 7(11) 2241-2245 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.