OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 8, Iss. 1 — Jan. 1, 1969
  • pp: 131–136

Comparison of Laser Mode Calculations

Robert L. Sanderson and William Streifer  »View Author Affiliations

Applied Optics, Vol. 8, Issue 1, pp. 131-136 (1969)

View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we show that numerical and kernel expansion procedures for solving the laser mode problem do not differ in essence; both convert the integral equation into a matrix equation. Furthermore, the Fox and Li iterative method is shown to be a matrix diagonalization technique. A particular kernel expansion using Gaussian-Hermite functions is discussed, as are matrix diagonalization techniques. Numerical results are compared with other published values. We conclude that the optimum procedure is to use gaussian quadrature numerical integration to convert to a matrix equation and diagonalize the matrix with the computer program ALLMAT. This method is computationally simple and simultaneously determines many modes. Also, it is applicable to unstable and/or tilted mirror resonators with selectively coated reflectors.

© 1969 Optical Society of America

Original Manuscript: July 5, 1968
Published: January 1, 1969

Robert L. Sanderson and William Streifer, "Comparison of Laser Mode Calculations," Appl. Opt. 8, 131-136 (1969)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  2. P. F. Checcacci, A. Consortini, A. Scheggi, Proc. IEEE, 54, 1329 (1966). [CrossRef]
  3. V. I. Krylov, Approximate Calculaton of Integrals (The Macmillan Company, New York, 1962).
  4. A. H. Stroud, D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, Inc., Englewood Cliffs, 1966).
  5. H. Schachter, L. Bergstein, in Optical Masers, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964), p. 173.
  6. L. Bergstein, E. Marom, J. Opt. Soc. Amer. 56, 16 (1966). [CrossRef]
  7. P. J. Eberlein, J. Soc. Ind. Appl. Math. 10, 74 (1962). [CrossRef]
  8. P. J. Eberlein, J. Boothroyd, Numerisch. Math. 11, 1 (1968). [CrossRef]
  9. J. G. P. Francis, Computer J. 4, 265, 332 (1961, 1962). [CrossRef]
  10. A. E. Siegman, R. Arrathoon, IEEE Trans. QE-3, 156 (1967).
  11. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965), Chap. 9.
  12. W. Streifer, J. Opt. Soc. Amer. 55, 868 (1965). [CrossRef]
  13. J. H. Wilkinson, Computer J. 4, 230 (1961a). [CrossRef]
  14. Ref. 11, p. 86.
  15. W. Streifer, H. Gamo in Symposium on Quasi-Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964), p. 351.
  16. G. N. Watson, J. London Math. Soc. 8, 194 (1933a). [CrossRef]
  17. D. Slepian, H. O. Pollak, Bell Syst. Tech. J. 40, 43 (1961).
  18. L. A. Vainshtein, Sov. Phys.–JETP 17, 714 (1963).
  19. G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).
  20. G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited