OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 9, Iss. 12 — Dec. 1, 1970
  • pp: 2725–2728

The Lensing Effect of CO2 Laser Plasma

H. K. V. Lotsch and W. C. Davis  »View Author Affiliations

Applied Optics, Vol. 9, Issue 12, pp. 2725-2728 (1970)

View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An unexpected phenomenon has been observed which triggered an investigation into the lensing effect of a CO2 laser plasma. This effect, so far thought to be negligible in a conventional CO2 laser of, for example, 2-m length, produces a focal length in the order of magnitude of −20 m. In view of this experimental observation, the focal length of the plasma lens, as well as the stability condition for an optical resonator with a plasma lens within its plane concave mirror system, are determined and expressed in terms of plasma and resonator characteristics as well as of the electrical power dissipated in the plasma. The analysis reveals that the semiconfocal configuration is most adverse for a frequency-stabilized laser. The overall result of this investigation suggests that the optimum configuration of a conventional CO2 laser for maximum output power is obtained when the negative focal power of the plasma lens precisely compensates for the positive focal power of the slightly curved mirror.

© 1970 Optical Society of America

Original Manuscript: March 25, 1970
Published: December 1, 1970

H. K. V. Lotsch and W. C. Davis, "The Lensing Effect of CO2 Laser Plasma," Appl. Opt. 9, 2725-2728 (1970)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schardin, Ergeb. exakt. Naturw. 20, 303 (1942). H. Wolter, Handbuch der Physik, S. Fluegge, Ed. (SpringerBerlin, 1956), Vol. 24, pp. 555–645. [CrossRef]
  2. D. E. Grey, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1957), pp. 6–21.
  3. M. Jakob, G. A. Hawkins, Elements of Heat Transfer (Wiley, New York, 1957), p. 109.
  4. H. Winston, R. A. Gudmundsen, Appl. Opt. 3, 143 (1964); W. H. Steier, Appl. Opt. 5, 1229 (1966). [CrossRef] [PubMed]
  5. E. A. J. Marcatili, Bell System Tech. J. 43, 2887 (1964).
  6. C. Kenty, M. A. Easley, B. T. Barnes, J. Appl. Phys. 22, 1006 (1951); L. A. Schlie, J. T. Verdeyen, IEEE J. Quantum Electron. QE-5, 21, 138 (1969). [CrossRef]
  7. (a)H. K. V. Lotsch, Z. Naturforschg. 19a, 1438 (1964); (b)H. K. V. Lotsch, Optik 26, 112, 181 (1967).
  8. M. Bertolotti, Nuovo Cimento (10) 32, 1242 (1964); J. T. Verdeyen, J. B. Gerardo, Appl. Opt. 7, 1467 (1968); I. A. Ramsay, J. J. Degnan, Appl. Opt. 9, 385 (1970). [CrossRef] [PubMed]
  9. M. Jakob, Heat Transfer (Wiley, New York, 1949), pp. 185–189.
  10. H. Steffen, F. K. Kneubuehl, IEEE J. Quantum Electron. QE-4, 922 (1968).
  11. D. R. Skinner, Opt. Commun. 1, 57 (1969). D. C. Smith, IEEE J. Quantum Electron. QE-5, 600 (1969). [CrossRef]
  12. B. W. McCaul, A. L. Schawlow, “Plasma Refractive Effects in HCN Lasers,” 2nd Conference on Chemical and Molecular Lasers, St. Louis, Missouri, 22–24 May, 1969.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited