OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 9, Iss. 3 — Mar. 1, 1970
  • pp: 545–552

Relation of Light Reflectance to Histological and Physical Evaluations of Cotton Leaf Maturity

H. W. Gausman, W. A. Allen, R. Cardenas, and A. J. Richardson  »View Author Affiliations


Applied Optics, Vol. 9, Issue 3, pp. 545-552 (1970)
http://dx.doi.org/10.1364/AO.9.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cotton plants were grown hydroponically with controlled environment. Third, growth chamber grown true leaves of cotton plants were tagged on the day they became macroscopically visible. Beginning 3.0 days after tagging, five leaf harvests representing maturity dates were made at successive 2- or 3-day intervals. Measurements with a spectrophotometer made on the leaves showed that the largest increase in reflectance, about 5%, and decrease in transmittance, about 8%, occurred between average values for after-tagging-ages of 3.5 days and 8.0 days over the 0.75–1.35-μ wavelength interval. Between after-tagging-ages of 3.5 days and 8.0 days, leaves expanded approximately fivefold, numbers of intercellular spaces approximately doubled, and thicknesses increased 14%. The theory of diffuse reflectance and transmittance of a compact leaf of equivalent water thickness (EWT) specified by D is generalized to include also the noncompact leaf characterized by many intercellular air spaces, can be regarded as a pile of N compact layers separated by infinitesimal air spaces. The void area index (VAI) of a noncompact leaf is given by N − 1, where N is not necessarily an integer. Predictions from the generalized theory include a measure of the water, air, and plant pigments in a leaf. An effective dispersion curve associated with the leaf surfaces is also obtained. A derived parameter D/N largely determines the reflectance and transmittance of a typical leaf over the 1.40–2.50-μ spectral range. A cotton leaf is highly compact when it first unfolds. At this point D/N ~ 180 μ. This value is essentially the leaf thickness. Intercellular air spaces develop rapidly during the next few days, and D/N decreases in value to about 130 μ. Subsequently, the leaf cells increase in size with no substantial further increase in the number of intercellular air spaces. This final growth phase is characterized by a slight increase in D/N to a maximum value of about 140 μ. Maximum reflectance of the leaf corresponds to a minimum value of D/N. The parameter D/N is highly correlated with the amount of intercellular air spaces in a leaf.

© 1970 Optical Society of America

History
Original Manuscript: September 15, 1969
Published: March 1, 1970

Citation
H. W. Gausman, W. A. Allen, R. Cardenas, and A. J. Richardson, "Relation of Light Reflectance to Histological and Physical Evaluations of Cotton Leaf Maturity," Appl. Opt. 9, 545-552 (1970)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-9-3-545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Humphries, A. W. Wheeler, Ann. Rev. Plant Physiol. 14, 385 (1963). [CrossRef]
  2. D. Hammond, Amer. J. Botany 28, 124 (1941). [CrossRef]
  3. G. S. Avery, Amer. J. Botany 20, 565 (1933). [CrossRef]
  4. F. M. Scott, M. R. Schroeder, F. M. Turrell, Botan. Gaz. 109, 381 (1948). [CrossRef]
  5. N. Sunderland, J. Exp. Botany 11, 68 (1960). [CrossRef]
  6. B. P. Strogonov, Physiological Basis of Salt Tolerance of Plants (Transl. by Israel Program for Scientific Translations, 1964) (Daniel Davey & Co., Inc., New York, 1962), p. 83.
  7. R. Brouwer, Acta Botan. Neerl. 12, 248 (1963).
  8. R. H. Nieman, Plant Physiol. 40, 156 (1965). [CrossRef] [PubMed]
  9. F. M. Turrell, M. E. Turrell, Proc. Iowa Acad. Sci. 50, 185 (1934).
  10. H. W. Gausman, R. Cardenas, Agron. J. 60, 566 (1968). [CrossRef]
  11. R. O. Slatyer, Plant-Water Relationships (Academic Press Inc., New York, 1967), Chap. 7, p. 218.
  12. F. M. Turrell, Amer. J. Botany 23, 255 (1936). [CrossRef]
  13. K. Esau, Plant Anatomy. (John Wiley & Sons, Inc., New York, 1965), Chap. 16, p. 430.
  14. W. A. Allen, A. J. Richardson, J. Opt. Soc. Amer. 58, 1023 (1968). [CrossRef]
  15. V. P. Kubelka, F. Munk, Z. Tech. Physik 12, 593 (1931).
  16. R. Willstätter, A. Stoll, Untersuchunger über die Assimilation der Kohlensaure (Julius Springer-Verlag, Berlin, 1913), p. 122.
  17. D. M. Gates, H. J. Keegan, J. C. Schleter, V. R. Weidner, Appl. Opt. 4, 11 (1965). [CrossRef]
  18. T. R. Sinclair, M. S. thesis, Purdue University Library, Lafayette, Indiana, p. 126.
  19. V. I. Myers, W. A. Allen, Appl. Opt. 7, 1819 (1968). [CrossRef] [PubMed]
  20. H. W. Gausman, W. A. Allen, R. Cardenas, Remote Sens. Environ. 1, 19 (1969). [CrossRef]
  21. W. A. Allen, H. W. Gausman, A. J. Richardson, J. R. Thomas, J. Opt. Soc. Amer. 59, 1376 (1969). [CrossRef]
  22. D. R. Hoagland, D. I. Arnon, Calif. Agr. Exp. Sta. Circ. 347, 36 (1938).
  23. R. H. Nieman, L. L. Poulsen, Botan. Gaz. 128, 69 (1967). [CrossRef]
  24. Trade names are included for information only and do not constitute endorsement by the U.S. Department of Agriculture.
  25. M. D. Heilman, C. L. Gonzalez, W. A. Swanson, W. J. Rippert, Agron. J. 60, 578 (1968). [CrossRef]
  26. R. E. Johnson, Agron. J. 59, 493 (1967). [CrossRef]
  27. C. L. Sanders, E. E. K. Middleton, J. Opt. Soc. Amer. 43, 58 (1953). [CrossRef]
  28. W. A. Jensen, Botanical Histochemistry (W. H. Freeman & Co., San Francisco, 1962), Chap. 4, p. 90.
  29. R. G. D. Steel, J. H. Torrie, Principles and Procedures of Statistics (McGraw-Hill Book Company, New York, 1960), Chap. 7, p. 107.
  30. G. G. Stokes, Proc. Roy. Soc. (London) 11, 545 (1862).
  31. G. W. Ingle, “Note on the coincidence of equations for the reflectance of translucent films,” ASTM Bull.116 (May1942).
  32. H. E. Hayward, The Structure of Economic Plants (The Macmillan Company, New York, 1951), p. 433.
  33. F. P. Weber, C. E. Olson, “Remote Sensing Implications of Changes in Physiologic Structure and Functions of Tree Seedlings under Moisture Stress,” Ann. Prog. Rep. for Remote Sensing Lab. for Natural Resource Program, NASA, by the Pacific Southwest Forest and Range Exp. Sta. (1967).
  34. H. Lundegårdh, Plant Physiology (American Elsevier Publishing Co., New York, 1966), Chap. 2, p. 76.
  35. J. A. Curcio, C. C. Petty, J. Opt. Soc. Amer. 41, 302 (1951). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited