OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 9, Iss. 3 — Mar. 1, 1970
  • pp: 653–663

Plasma Self-Q Switching in Far Infrared Lasers

B. W. McCaul  »View Author Affiliations

Applied Optics, Vol. 9, Issue 3, pp. 653-663 (1970)

View Full Text Article

Enhanced HTML    Acrobat PDF (1627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The plasma electrons in pulsed far ir lasers constitute a temporary divergent refractive element. This lens element can be strong enough to prohibit stable laser modes and serves to explain the delay commonly reported between current and laser pulses. With electron recombination the cavity rapidly becomes stable, Q switching the laser pulse. The lens effect and Q-switching rate are calculated in terms of tube dimensions, laser frequency, electron density, and radial electron density distribution. Higher laser frequencies appear earlier when this effect is operative. A simple criterion is given to distinguish this delay effect from other sources of laser pulse delay. Experimental measurements are presented of cavity stability as a function of mirror curvature and electron density; wall reflections are shown to be important. The radial electron density distribution is compared with plasma theory results. Lens effects associated with the laser gain are shown to be negligible.

© 1970 Optical Society of America

Original Manuscript: October 5, 1969
Published: March 1, 1970

B. W. McCaul, "Plasma Self-Q Switching in Far Infrared Lasers," Appl. Opt. 9, 653-663 (1970)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Arams, C. Allen, M. Wang, K. Button, L. Rubin, Proc. IEEE 55, 420 (1967). [CrossRef]
  2. S. Kon, M. Yamanaka, J. Yamamoto, H. Yoshinaga, Japan. J. Phys. 6, 612 (1967). [CrossRef]
  3. S. Kon, M. Otsuka, M. Yamanaka, H. Yoshinaga, Japan. J. Appl. Phys. 7, 434 (1968). [CrossRef]
  4. V. Sochor, E. Brannen, Appl. Phys. Lett. 10, 232 (1967). [CrossRef]
  5. H. Steffen, B. Keller, F. K. Kneubühl, Electron. Lett. 3, 562 (1967). [CrossRef]
  6. R. G. Jones, C. C. Bradley, J. Chamberlain, H. A. Gebbie, N. W. B. Stone, H. Sixsmith, Appl. Opt. 8, 701 (1969). [CrossRef] [PubMed]
  7. E. Brannen, V. Sochor, W. J. Sarjeant, H. R. Froelich, Proc. IEEE 55, 562 (1967).
  8. M. Yamanaka, S. Kon, J. Yamamoto, H. Yoshinaga, Japan. J. Appl. Phys. 7, 554 (1968). [CrossRef]
  9. H. Steffen, F. K. Kneubühl, IEEE J. Quant. Electron. QE-4, 992 (1968). [CrossRef]
  10. L. E. S. Mathias, A. Crocker, M. S. Wills, IEEE J. Quantum Electron. QE-4, 205 (1968). [CrossRef]
  11. R. Turner, T. O. Poehler, J. Appl. Phys. 39, 5726 (1968). [CrossRef]
  12. See, for example, R. Turner, A. K. Hochberg, T. O. Poehler, Appl. Phys. Lett. 12, 104 (1968), and P. G. Frayne, J. Phys. B, 2, 247 (1969). [CrossRef]
  13. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  14. M. Bertolotti, Nuovo Cimento 32, 1242 (1964); E. R. Caianiello, A. Turrin, Nuovo Cimento 10, 594 (1953). [CrossRef]
  15. G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).
  16. V. Sochor, Czech. J. Phys. B18, 910 (1968). [CrossRef]
  17. J. P. Markiewicz, J. L. Emmett, Appl. Opt. 5, 1687 (1966). [CrossRef] [PubMed]
  18. E. D. Nelson, J. Y. Wong, Appl. Opt. 6, 1259 (1967). [CrossRef] [PubMed]
  19. See E. H. Putley, Appl. Opt. 4, 649 (1965). [CrossRef]
  20. D. E. McCumber, Bell Syst. Tech. J. 44, 333 (1965).
  21. T. Li, H. Zucker, J. Opt. Soc. Amer. 57, 984 (1967). [CrossRef]
  22. A. E. Siegman, Proc. IEEE 53, 277 (1965); see also A. E. Siegman, R. Arrathoon, IEEE J. Quantum Electron. QE-3, 156 (1967). [CrossRef]
  23. A. L. Bloom, Gas Lasers (John Wiley & Sons, New York, 1968), Chap. 3.
  24. W. Schottky, Physik. Z. 25, 635 (1929); L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929); G. Francis, Handbuch der Physik (Julius Springer-Verlag, Berlin, 1956), Vol. 22, p. 53. [CrossRef]
  25. S. A. Self, H. N. Ewald, Phys. Fluids 9, 2486 (1966). [CrossRef]
  26. H. Greenstein, Phys. Rev. 175, 438 (1968). Greenstein treats inhomogeneously-broadened lines and gain saturation in terms of phenomenological relaxation constants using a generalized Bloch formalism. The results given here for an unsaturated, homogeneously-broadened gain line are readily extended using the Greenstein development. This extension, however, would yield no stronger effects than the present analysis does. [CrossRef]
  27. H. Kogelnik, Appl. Opt. 4, 1562 (1965). [CrossRef]
  28. L. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited