OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 9, Iss. 9 — Sep. 1, 1970
  • pp: 1993–1999

Iterative Solution of the Radiative Transfer Equation for the Temperature and Absorbing Gas Profile of an Atmosphere

W. L. Smith  »View Author Affiliations


Applied Optics, Vol. 9, Issue 9, pp. 1993-1999 (1970)
http://dx.doi.org/10.1364/AO.9.001993


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative solution is developed for the temperature and absorbing gas profiles of an atmosphere from spectral and angular measurements of atmospheric radiance. This iterative solution is novel in that there is no limiting assumption made about the analytical form of the profile imposed by the number of radiance observations available. The solution is demonstrated through the determination of temperature and water vapor profiles of the earth’s atmosphere from Nimbus III and Nimbus IV Satellite InfraRed Spectrometer (SIRS) observations. The solutions are compared with conventional rawinsonde and rocketsonde observations. The results indicate that this solution can be used effectively to specify the general meteorological characteristics of an atmosphere from satellite or ground-based radiometric observations.

© 1970 Optical Society of America

History
Original Manuscript: May 20, 1970
Published: September 1, 1970

Citation
W. L. Smith, "Iterative Solution of the Radiative Transfer Equation for the Temperature and Absorbing Gas Profile of an Atmosphere," Appl. Opt. 9, 1993-1999 (1970)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-9-9-1993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. F. King, Scientific Uses of Earth Satellites, Ed. J. A. Van Allen (Univ. Mich., Ann Arbor, 1958), p. 133.
  2. J. I. F. King, J. Atmos. Sci. 20, 245 (1963). [CrossRef]
  3. J. I. F. King, J. Atmos. Sci. 21, 324 (1964). [CrossRef]
  4. L. D. Kaplan, J. Opt. Soc. Amer. 49, 1004 (1959). [CrossRef]
  5. L. D. Kaplan, J. Quant. Spectrosc. Radiative Transfer 1, 89 (1961). [CrossRef]
  6. D. Q. Wark, D. T. Hilleary, Science 165, 1256 (1969). [CrossRef] [PubMed]
  7. R. A. Hanel, B. Conrath, Science 165, 1258 (1969). [CrossRef] [PubMed]
  8. W. L. Smith, H. M. Woolf, W. J. Jacob, Monthly Weather Rev. 98, 582 (1970). [CrossRef]
  9. D. Q. Wark, H. E. Fleming, Monthly Weather Rev. 94, 351 (1966). [CrossRef]
  10. C. D. Rodgers, “Satellite Infrared Radiometer; A Discussion of Inversion Methods,” Univ. Oxford Clarendon Lab. Mem. No. 66.13, Oxford, 1966.
  11. E. R. Westwater, O. N. Strand, ESSA Tech. Rep. IER 37-ITSA 37, U.S. Dept. Commerce, Washington, D.C., 1967.
  12. W. L. Smith, Monthly Weather Rev. 95, 363 (1967). [CrossRef]
  13. W. L. Smith, Monthly Weather Rev. 96, 387 (1968). [CrossRef]
  14. M. T. Chahine, J. Opt. Soc. Amer. 58, 1634 (1968). [CrossRef]
  15. B. Conrath, J. Geophys. Res. 74, 3347 (1969). [CrossRef]
  16. Nimbus Project, The Nimbus III User’s Guide (Goddard Space Flight Ctr., NASA, 1969).
  17. Nimbus Project, The Nimbus IV User’s Guide (Goddard Space Flight Ctr., NASA, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited