OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 9, Iss. 9 — Sep. 1, 1970
  • pp: 2123–2129

A Critical Evaluation of Rhomb-Type Quarterwave Retarders

J. M. Bennett  »View Author Affiliations

Applied Optics, Vol. 9, Issue 9, pp. 2123-2129 (1970)

View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The most achromatic quarterwave plates appear to be rhomb-type devices. General relations are given for calculating the phase retardation of these devices and are used to determine the variation of the phase retardation with wavelength and with acceptance angle for different rhomb designs. Length-to-aperture ratio, beam deviation, surface coatings, effect of strain birefringence, and other parameters are also considered. The classical version of the Fresnel rhomb can be optimized to improve its performance, and several of the more recent rhomb designs have excellent characteristics. The choice of which type of rhomb to use depends on the requirements of the particular optical system.

© 1970 Optical Society of America

Original Manuscript: March 17, 1970
Published: September 1, 1970

J. M. Bennett, "A Critical Evaluation of Rhomb-Type Quarterwave Retarders," Appl. Opt. 9, 2123-2129 (1970)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. West, A. S. Makas, J. Opt. Soc. Amer. 39, 791 (1949). [CrossRef]
  2. M. Françon, S. Mallick, J. Vulmière, J. Opt. Soc. Amer. 55, 1553 (1965). [CrossRef]
  3. G. Destriau, J. Prouteau, J. Phys. Radium 10, (8) 53 (1949). [CrossRef]
  4. S. Pancharatnam, Proc. Indian Acad. Sci. A41, 130, 137 (1955).
  5. C. M. McIntyre, S. E. Harris, J. Opt. Soc. Amer. 58, 1575 (1968). [CrossRef]
  6. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, N.Y., 1957), pp. 517–518.
  7. R. J. King, J. Sci. Instrum. 43, 617 (1966). [CrossRef]
  8. P. B. Clapham, M. J. Downs, R. J. King, Appl. Opt. 8, 1965 (1969). [CrossRef] [PubMed]
  9. F. Mooney, J. Opt. Soc. Amer. 42, 181 (1952). [CrossRef]
  10. A. E. Oxley, Phil. Mag. 21, (6) 517 (1911).
  11. V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).
  12. Yu. I. Krasilov, Opt. Spectrosc. 22, 267 (1967).
  13. See Ref. 6, p. 515.
  14. G. A. Harle, Nature 166, 149 (1950). [CrossRef] [PubMed]
  15. F. Abelès, Progress in Optics, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1963), Vol. 2, pp. 252–253. [CrossRef]
  16. W. Brouwer, American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, N.Y., 1963), p. 6–84.
  17. E. D. Palik, Appl. Opt. 2, 527 (1963). [CrossRef]
  18. W. L. Wolfe, S. S. Ballard, K. A. McCarthy, American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, N.Y., 1963), pp. 6–22 and 6–36.
  19. R. J. King, M. J. Downs, Proceedings of the Symposium on Recent Developments in Ellipsometry, Surface Sci. 16, 288 (1969). [CrossRef]
  20. H. E. Bennett, J. M. Bennett, Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, N.Y., 1967), Vol. 4, pp. 79–81.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited