## Recent progress in three-dimensional information processing based on integral imaging

Applied Optics, Vol. 48, Issue 34, pp. H77-H94 (2009)

http://dx.doi.org/10.1364/AO.48.000H77

Acrobat PDF (2592 KB)

### Abstract

Recently developed integral imaging techniques are reviewed. Integral imaging captures and reproduces the light rays from the object space, enabling the acquisition and the display of the three-dimensional information of the object in an efficient way. Continuous effort on integral imaging has been improving the performance of the capture and display process in various aspects, including distortion, resolution, viewing angle, and depth range. Digital data processing of the captured light rays can now visualize the three-dimensional structure of the object with a high degree of freedom and enhanced quality. This recent progress is of high interest for both industrial applications and academic research.

© 2009 Optical Society of America

## 1. Introduction

1. C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London **128**, 371–394 (1838). [CrossRef]

## 2. Principle of Integral Imaging

## 3. Three-Dimensional Information Acquisition

### 3A. Pickup Methods

3. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. **36**, 1598–1603 (1997). [CrossRef]

3. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. **36**, 1598–1603 (1997). [CrossRef]

4. R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez- Corral, and B. Javidi, “ Optically-corrected elemental images for undistorted integral image display,” Opt. Express **14**, 9657–9663 (2006). [CrossRef]

3. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. **36**, 1598–1603 (1997). [CrossRef]

5. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and M. Okui, “Cross talk elimination using an aperture for recording elemental images of integral photography,” J. Opt. Soc. Am. A **26**, 680–690 (2009). [CrossRef]

4. R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez- Corral, and B. Javidi, “ Optically-corrected elemental images for undistorted integral image display,” Opt. Express **14**, 9657–9663 (2006). [CrossRef]

6. J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express **16**, 13969–13978 (2008). [CrossRef]

*f*optics in front of the lens array. The 4-

*f*optics, which consists of 5 planes, i.e., the critical plane, first lens, aperture plane, second lens, and rear focal plane, separated from each other by the focal length, relays the object to the lens array space maintaining the parallel pickup directions and no crosstalk condition. Therefore the objects located around the critical plane are relayed by the 4-

*f*optics to the space around the lens array, and captured, spanning real and virtual fields simultaneously without any geometrical distortion. The dynamic control of the lateral location of the aperture at the Fourier plane of the 4-

*f*optics can also change the angular range captured in each elemental image, making it possible to increase the viewing angle of the 3D images by time multiplexing afterwards [5

5. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and M. Okui, “Cross talk elimination using an aperture for recording elemental images of integral photography,” J. Opt. Soc. Am. A **26**, 680–690 (2009). [CrossRef]

7. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. **37**, 2034–2045 (1998). [CrossRef]

7. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. **37**, 2034–2045 (1998). [CrossRef]

8. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. **45**, 9066–9078 (2006). [CrossRef]

9. N. Davies, M. McCormick, and L. Yang, “3D imaging systems: a new development,” Appl. Opt. **27**, 4520–4528 (1988). [CrossRef]

10. S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Opt. **43**, 4539–4549 (2004). [CrossRef]

11. J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. **33**, 279–281 (2008). [CrossRef]

12. M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express **13**, 9175–9180 (2005). [CrossRef]

14. K. Fife, A. E. Gamal, and H.-S. P. Wong, “A multiaperture image sensor with **43**, 2990–3005 (2008). [CrossRef]

### 3B. Postprocessing

15. J. Arai, M. Okui, M. Kobayashi, and F. Okano, “Geometrical effects of positional errors in integral photography,” J. Opt. Soc. Am. A **21**, 951–958 (2004). [CrossRef]

16. B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express **15**, 11889–11902 (2007). [CrossRef]

*θ*column that has the maximum number of strong peaks in the Hough transform parameter space

18. N. P. Sgouros, S. S. Athineos, M. S. Sangriotis, P. G. Papageorgas, and N. G. Theofanous, “Accurate lattice extraction in integral images,” Opt. Express **14**, 10403–10409 (2006). [CrossRef]

18. N. P. Sgouros, S. S. Athineos, M. S. Sangriotis, P. G. Papageorgas, and N. G. Theofanous, “Accurate lattice extraction in integral images,” Opt. Express **14**, 10403–10409 (2006). [CrossRef]

## 4. Three-Dimensional Data Processing

### 4A. Depth Slice Image Generation

19. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express **12**, 483–491 (2004). [CrossRef]

20. D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express **15**, 12039–12049 (2007). [CrossRef]

20. D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express **15**, 12039–12049 (2007). [CrossRef]

21. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. **45**, 4631–4637 (2006). [CrossRef]

22. J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. **46**, 7697–7708 (2007). [CrossRef]

23. D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. **48**, 827–833 (2009). [CrossRef]

24. K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur- metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. **47**, 2859–2869 (2008). [CrossRef]

25. G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express **16**, 17154–17160 (2008). [CrossRef]

27. M. DaneshPanah, B. Javidi, and E. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express **16**, 6368–6377 (2008). [CrossRef]

28. I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express **16**, 13080–13089 (2008). [CrossRef]

32. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express **14**, 12096–12108 (2006). [CrossRef]

33. I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. **34**, 731–733 (2009). [CrossRef]

34. S. Yeom, B. Javidi, and E. Watson, “Three-dimensional dis tortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express **15**, 1513–1533 (2007). [CrossRef]

35. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express **16**, 4426–4436 (2008). [CrossRef]

37. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational in tegral imaging,” Opt. Lett. **31**, 1106–1108 (2006). [CrossRef]

38. M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett. **33**, 2737–2739 (2008). [CrossRef]

### 4B. View Image Generation

40. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one- dimensional elemental image modification,” Appl. Opt. **43**, 4882–4895 (2004). [CrossRef]

40. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one- dimensional elemental image modification,” Appl. Opt. **43**, 4882–4895 (2004). [CrossRef]

45. G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of three-dimensional shape and texture from integral photography images,” Appl. Opt. **46**, 5311–5320 (2007). [CrossRef]

46. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express **16**, 8800–8813 (2008). [CrossRef]

46. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express **16**, 8800–8813 (2008). [CrossRef]

45. G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of three-dimensional shape and texture from integral photography images,” Appl. Opt. **46**, 5311–5320 (2007). [CrossRef]

46. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express **16**, 8800–8813 (2008). [CrossRef]

### 4C. Depth Map Calculation

40. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one- dimensional elemental image modification,” Appl. Opt. **43**, 4882–4895 (2004). [CrossRef]

45. G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of three-dimensional shape and texture from integral photography images,” Appl. Opt. **46**, 5311–5320 (2007). [CrossRef]

**46**, 5311–5320 (2007). [CrossRef]

**43**, 4882–4895 (2004). [CrossRef]

**43**, 4882–4895 (2004). [CrossRef]

### 4D. Hologram Generation

50. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. **45**, 4026–4036 (2006). [CrossRef]

*et al.*calculated each point in the Fourier hologram by integrating corresponding elemental image after multiplying it with a slanted plane wave [51

51. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express **15**, 5754–5760 (2007). [CrossRef]

52. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express **17**, 6320–6334 (2009). [CrossRef]

52. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express **17**, 6320–6334 (2009). [CrossRef]

52. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express **17**, 6320–6334 (2009). [CrossRef]

### 4E. Compression of Elemental Images

## 5. Displays

### 5A. Principle

### 5B. Viewing Parameters of an Integral Imaging Display

*w*is the elemental lens pitch and

*g*is the distance between the display panel and the lens array.

57. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. **40**, 5217–5232 (2001). [CrossRef]

58. X. Wang, L. He, and Q. Bu, “Performance characterization of integral imaging systems based on human vision,” Appl. Opt. **48**, 183–188 (2009). [CrossRef]

59. M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. **33**, 684–686 (2008). [CrossRef]

61. F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. **32**, 364–366 (2007). [CrossRef]

62. R. Martínez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martínez-Corral, “Facet braiding: a fundamental problem in integral imaging,” Opt. Lett. **32**, 1078–1080 (2007). [CrossRef]

### 5C. Viewing Quality Enhancement

64. J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express **16**, 8549–8556 (2008). [CrossRef]

65. J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. **48**, 862–867 (2009). [CrossRef]

66. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. **47**, D80–D86 (2008). [CrossRef]

67. J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express **15**, 13023–13034 (2007). [CrossRef]

68. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. **26**, 1481–1482 (2001). [CrossRef]

69. J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express **11**, 782 (2003). [CrossRef]

70. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. **45**, 4334–4343 (2006). [CrossRef]

71. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. **46**, 3766–3773 (2007). [CrossRef]

72. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. **27**, 818–820 (2002). [CrossRef]

73. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. **48**, 998–1007 (2009). [CrossRef]

74. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. **45**, 7375–7381 (2006). [CrossRef]

75. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. **44**, 546–552 (2005). [CrossRef]

76. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imag ing by multiple-axis telecentric relay system,” Opt. Express **15**, 16255–16260 (2007). [CrossRef]

*f*-number, and hence the viewing angle can be enhanced [78

78. H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express **16**, 21865–21880 (2008). [CrossRef]

*et al.*used ultrahigh definition video system of over 4000 scan lines for developing a high-resolution integral imaging system [79

79. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. **45**, 1704–1712 (2006). [CrossRef]

80. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express **12**, 1067–1076 (2004). [CrossRef]

81. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. **27**, 324–326 (2002). [CrossRef]

82. X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. **33**, 449–451 (2008). [CrossRef]

83. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express **15**, 4814–4822 (2007). [CrossRef]

84. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express **15**, 18253–18267 (2007). [CrossRef]

### 5D. Other Systems

85. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. **29**, 2734–2736 (2004). [CrossRef]

87. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. **31**, 2852–2854 (2006). [CrossRef]

89. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. **45**, 9132–9139 (2006). [CrossRef]

90. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. **46**, 7149–7154 (2007). [CrossRef]

91. J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. **48**, 504–511 (2009). [CrossRef]

## 6. Conclusion

1. | C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London |

2. | G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys. |

3. | F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. |

4. | R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez- Corral, and B. Javidi, “ Optically-corrected elemental images for undistorted integral image display,” Opt. Express |

5. | K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and M. Okui, “Cross talk elimination using an aperture for recording elemental images of integral photography,” J. Opt. Soc. Am. A |

6. | J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express |

7. | J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. |

8. | J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. |

9. | N. Davies, M. McCormick, and L. Yang, “3D imaging systems: a new development,” Appl. Opt. |

10. | S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Opt. |

11. | J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. |

12. | M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express |

13. | R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (Stanford University, 2005). |

14. | K. Fife, A. E. Gamal, and H.-S. P. Wong, “A multiaperture image sensor with |

15. | J. Arai, M. Okui, M. Kobayashi, and F. Okano, “Geometrical effects of positional errors in integral photography,” J. Opt. Soc. Am. A |

16. | B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express |

17. | A. Aggoun, “Pre-processing of integral images for 3-D displays,” J. Display Technol. |

18. | N. P. Sgouros, S. S. Athineos, M. S. Sangriotis, P. G. Papageorgas, and N. G. Theofanous, “Accurate lattice extraction in integral images,” Opt. Express |

19. | S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express |

20. | D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express |

21. | D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. |

22. | J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. |

23. | D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. |

24. | K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur- metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. |

25. | G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express |

26. | G. Baasantseren, J.-H. Park, and N. Kim, “Depth discrimination enhanced computational integral imaging using random pattern illumination,” Jpn. J. Appl. Phys. |

27. | M. DaneshPanah, B. Javidi, and E. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express |

28. | I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express |

29. | B. Javidi and Y. S. Hwang, “Passive near-infrared 3D sensing and computational reconstruction with synthetic aperture integral imaging,” J. Display Technol. |

30. | R. Schulein and B. Javidi, “Underwater multi-view three- dimensional imaging,” J. Display Technol. |

31. | M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics (Proc. SIGGRAPH) |

32. | B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express |

33. | I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. |

34. | S. Yeom, B. Javidi, and E. Watson, “Three-dimensional dis tortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express |

35. | B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express |

36. | C. M. Do, R. Martínez-Cuenca, and B. Javidi, “Three-dimensional object-distortion-tolerant recognition for integral imaging using independent component analysis,” J. Opt. Soc. Am A |

37. | B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational in tegral imaging,” Opt. Lett. |

38. | M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett. |

39. | T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea |

40. | J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one- dimensional elemental image modification,” Appl. Opt. |

41. | J.-H. Park, S. Jung, H. Choi, and B. Lee, “A novel depth extraction algorithm incorporating a lens array and a camera by reassembling pixel columns of elemental images,” Proc. SPIE |

42. | C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE |

43. | C. Wu, M. McCormick, A. Aggoun, and S. Y. Kung, “Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm,” J. Display Technol. |

44. | M.-S. Kim, G. Baasantseren, N. Kim, and J.-H. Park, “Hologram generation of 3D objects using multiple orthographic view images,” J. Opt. Soc. Korea |

45. | G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of three-dimensional shape and texture from integral photography images,” Appl. Opt. |

46. | J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express |

47. | M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Patt. Anal. Machine Intell. |

48. | J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “A new stereovision scheme using a camera and a lens array,” Proc. SPIE |

49. | K. Hong, J. Hong, J.-M. Kang, J.-H. Jung, J.-H. Park, and B. Lee, “Improved three-dimensional depth extraction using super resolved elemental image set,” in Digital Holography and Three-Dimensional Imaging (DH) (Optical Society of America, 2009), paper DWB1. |

50. | T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. |

51. | N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express |

52. | J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express |

53. | S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express |

54. | N. Sgouros, I. Kontaxakis, and M. Sangriotis, “Effect of different traversal schemes in integral image coding,” Appl. Opt. |

55. | E. Elharar, A. Stern, O. Hadar, and B. Javidi, “A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform,” J. Display Technol. |

56. | S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. |

57. | J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. |

58. | X. Wang, L. He, and Q. Bu, “Performance characterization of integral imaging systems based on human vision,” Appl. Opt. |

59. | M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. |

60. | J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” J. Display Technol. |

61. | F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. |

62. | R. Martínez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martínez-Corral, “Facet braiding: a fundamental problem in integral imaging,” Opt. Lett. |

63. | V. V. Saveljev and S.-J. Shin, “Layouts and celss in integral photography and pointlight source model,” J. Opt. Soc. Korea |

64. | J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express |

65. | J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. |

66. | J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. |

67. | J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express |

68. | B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. |

69. | J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express |

70. | Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. |

71. | Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. |

72. | B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. |

73. | J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. |

74. | D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. |

75. | Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. |

76. | R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imag ing by multiple-axis telecentric relay system,” Opt. Express |

77. | G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging (DH) (Optical Society of America, 2009), paper DWB27. |

78. | H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express |

79. | J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. |

80. | H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express |

81. | J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. |

82. | X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. |

83. | H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express |

84. | Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express |

85. | J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. |

86. | J.-H. Park, J. Kim, J.-P. Bae, Y. Kim, and B. Lee, “Viewing angle enhancement of three-dimension/two-dimension convertible integral imaging display using double collimated or non-collimated illumination,” Jpn. J. Appl. Phys. |

87. | S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. |

88. | H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Info. Display |

89. | M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. |

90. | Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. |

91. | J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. |

**OCIS Codes**

(100.6890) Image processing : Three-dimensional image processing

(110.2990) Imaging systems : Image formation theory

(110.6880) Imaging systems : Three-dimensional image acquisition

**History**

Original Manuscript: June 30, 2009

Revised Manuscript: September 5, 2009

Manuscript Accepted: September 11, 2009

Published: October 9, 2009

**Virtual Issues**

(2009) *Advances in Optics and Photonics*

Digital Holography and 3-D Imaging: Interactive Science Publishing (2009) *Applied Optics*

October 8, 2009 *Spotlight on Optics*

**Citation**

Jae-Hyeung Park, Keehoon Hong, and Byoungho Lee, "Recent progress in three-dimensional information processing based on integral imaging," Appl. Opt. **48**, H77-H94 (2009)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-34-H77

Sort: Year | Journal | Reset

### References

- C. Wheatstone, “Contributions to the physiology of vision.--Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371-394 (1838). [CrossRef]
- G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys. 7, 821-825 (1908).
- F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598-1603 (1997). [CrossRef]
- R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez-Corral, and B. Javidi, “ Optically-corrected elemental images for undistorted integral image display,” Opt. Express 14, 9657-9663 (2006). [CrossRef]
- K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and M. Okui, “Cross talk elimination using an aperture for recording elemental images of integral photography,” J. Opt. Soc. Am. A 26, 680-690 (2009). [CrossRef]
- J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express 16, 13969-13978 (2008). [CrossRef]
- J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034-2045(1998). [CrossRef]
- J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45, 9066-9078 (2006). [CrossRef]
- N. Davies, M. McCormick, and L. Yang, “3D imaging systems: a new development,” Appl. Opt. 27, 4520-4528 (1988). [CrossRef]
- S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Opt. 43, 4539-4549 (2004). [CrossRef]
- J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33, 279-281 (2008). [CrossRef]
- M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175-9180 (2005). [CrossRef]
- R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005-02 (Stanford University, 2005).
- K. Fife, A. E. Gamal, and H.-S. P. Wong, “A multiaperture image sensor with 0.7 um pixels in 0.11 um CMOS technology,” IEEE J. Solid-State Circuits 43, 2990-3005 (2008). [CrossRef]
- J. Arai, M. Okui, M. Kobayashi, and F. Okano, “Geometrical effects of positional errors in integral photography,” J. Opt. Soc. Am. A 21, 951-958 (2004). [CrossRef]
- B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889-11902 (2007). [CrossRef]
- A. Aggoun, “Pre-processing of integral images for 3-D displays,” J. Display Technol. 2, 393-400 (2006).
- N. P. Sgouros, S. S. Athineos, M. S. Sangriotis, P. G. Papageorgas, and N. G. Theofanous, “Accurate lattice extraction in integral images,” Opt. Express 14, 10403-10409 (2006). [CrossRef]
- S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004). [CrossRef]
- D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039-12049 (2007). [CrossRef]
- D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631-4637 (2006). [CrossRef]
- J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46, 7697-7708 (2007). [CrossRef]
- D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. 48, 827-833 (2009). [CrossRef]
- K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869(2008). [CrossRef]
- G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154-17160 (2008). [CrossRef]
- G. Baasantseren, J.-H. Park, and N. Kim, “Depth discrimination enhanced computational integral imaging using random pattern illumination,” Jpn. J. Appl. Phys. 48, 020216 (2009).
- M. DaneshPanah, B. Javidi, and E. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368-6377 (2008). [CrossRef]
- I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008). [CrossRef]
- B. Javidi and Y. S. Hwang, “Passive near-infrared 3D sensing and computational reconstruction with synthetic aperture integral imaging,” J. Display Technol. 4, 3-5 (2008).
- R. Schulein and B. Javidi, “Underwater multi-view three-dimensional imaging,” J. Display Technol. 4, 351-353 (2008).
- M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics (Proc. SIGGRAPH) 25, 924-934 (2006).
- B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096-12108 (2006). [CrossRef]
- I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731-733 (2009). [CrossRef]
- S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513-1533 (2007). [CrossRef]
- B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426-4436 (2008). [CrossRef]
- C. M. Do, R. Martínez-Cuenca, and B. Javidi, “Three-dimensional object-distortion-tolerant recognition for integral imaging using independent component analysis,” J. Opt. Soc. Am A 26, 245-251 (2009).
- B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006). [CrossRef]
- M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett. 33, 2737-2739(2008). [CrossRef]
- T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13, 139-145 (2009).
- J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43, 4882-4895 (2004). [CrossRef]
- J.-H. Park, S. Jung, H. Choi, and B. Lee, “A novel depth extraction algorithm incorporating a lens array and a camera by reassembling pixel columns of elemental images,” Proc. SPIE 4929, 49-58 (2002).
- C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135-143(2002).
- C. Wu, M. McCormick, A. Aggoun, and S. Y. Kung, “Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm,” J. Display Technol. 4, 101-108 (2008).
- M.-S. Kim, G. Baasantseren, N. Kim, and J.-H. Park, “Hologram generation of 3D objects using multiple orthographic view images,” J. Opt. Soc. Korea 12, 269-274 (2008).
- G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of three-dimensional shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320(2007). [CrossRef]
- J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800-8813 (2008). [CrossRef]
- M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Patt. Anal. Machine Intell. 15, 353-363(1993).
- J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “A new stereovision scheme using a camera and a lens array,” Proc. SPIE 4471, 73-80 (2001).
- K. Hong, J. Hong, J.-M. Kang, J.-H. Jung, J.-H. Park, and B. Lee, “Improved three-dimensional depth extraction using super resolved elemental image set,” in Digital Holography and Three-Dimensional Imaging (DH) (Optical Society of America, 2009), paper DWB1.
- T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026-4036 (2006). [CrossRef]
- N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007). [CrossRef]
- J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320-6334 (2009). [CrossRef]
- S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632-1642 (2004). [CrossRef]
- N. Sgouros, I. Kontaxakis, and M. Sangriotis, “Effect of different traversal schemes in integral image coding,” Appl. Opt. 47, D28-D37 (2008). [CrossRef]
- E. Elharar, A. Stern, O. Hadar, and B. Javidi, “A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform,” J. Display Technol. 3, 321-325 (2007).
- S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71-L74 (2005).
- J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217-5232 (2001). [CrossRef]
- X. Wang, L. He, and Q. Bu, “Performance characterization of integral imaging systems based on human vision,” Appl. Opt. 48, 183-188 (2009). [CrossRef]
- M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33, 684-686 (2008). [CrossRef]
- J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” J. Display Technol. 4, 324-331 (2008).
- F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364-366 (2007). [CrossRef]
- R. Martínez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martínez-Corral, “Facet braiding: a fundamental problem in integral imaging,” Opt. Lett. 32, 1078-1080(2007). [CrossRef]
- V. V. Saveljev and S.-J. Shin, “Layouts and celss in integral photography and pointlight source model,” J. Opt. Soc. Korea 13, 131-138 (2009).
- J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549-8556(2008). [CrossRef]
- J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862-867 (2009). [CrossRef]
- J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. 47, D80-D86 (2008). [CrossRef]
- J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023-13034 (2007). [CrossRef]
- B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481-1482 (2001). [CrossRef]
- J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 782 (2003). [CrossRef]
- Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334-4343(2006). [CrossRef]
- Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766-3773 (2007). [CrossRef]
- B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818-820(2002). [CrossRef]
- J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998-1007 (2009). [CrossRef]
- D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006). [CrossRef]
- Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005). [CrossRef]
- R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255-16260 (2007). [CrossRef]
- G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging (DH) (Optical Society of America, 2009), paper DWB27.
- H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865-21880 (2008). [CrossRef]
- J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45, 1704-1712 (2006). [CrossRef]
- H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067-1076 (2004). [CrossRef]
- J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002). [CrossRef]
- X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449-451 (2008). [CrossRef]
- H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814-4822 (2007). [CrossRef]
- Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267 (2007). [CrossRef]
- J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004). [CrossRef]
- J.-H. Park, J. Kim, J.-P. Bae, Y. Kim, and B. Lee, “Viewing angle enhancement of three-dimension/two-dimension convertible integral imaging display using double collimated or non-collimated illumination,” Jpn. J. Appl. Phys. 44, L991-L994 (2005).
- S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006). [CrossRef]
- H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Info. Display 15, 315-320 (2007).
- M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45, 9132-9139 (2006). [CrossRef]
- Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007). [CrossRef]
- J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504-511 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
Fig. 14 |
Fig. 15 |

Fig. 16 |
Fig. 17 |
Fig. 18 |

Fig. 19 |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.