OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2353–2362
« Show journal navigation

Feasibility of utilizing Cherenkov Telescope Array gamma-ray telescopes as free-space optical communication ground stations

Alberto Carrasco-Casado, Mariafernanda Vilera, Ricardo Vergaz, and Juan Francisco Cabrero  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2353-2362 (2013)
http://dx.doi.org/10.1364/AO.52.002353


View Full Text Article

Acrobat PDF (811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.

© 2013 Optical Society of America

1. Introduction

IACTs do not detect gamma-ray radiation directly. Instead, they detect the effects of this radiation after interacting with the atmosphere. When particles that result from this interaction of high-energy gamma rays with molecules in the upper atmosphere travel through a medium faster than the speed of light in that medium, they induce a Cherenkov effect, consisting of a cone-shaped shower of photons directed along the path determined by the original particles [7

7. M. Doro, “CTA—a project for a new generation of Cherenkov telescopes,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 630, 285–290 (2011). [CrossRef]

]. The Cherenkov photons range in wavelength from 300 nm up to several meters, limited by the atmospheric transmission [8

8. C. Schultz, “Novel all-aluminium mirrors of the MAGIC telescope project and low light level silicon photo-multiplier sensors for future telescopes,” Master’s thesis (Max Planck Institute, 2007), p. 59.

]. However, the spectral intensity distribution is proportional to λ2, and thus ultraviolet and blue components predominate. For this reason, although the goal of CTA is to perform gamma-ray astronomy, IACTs are indeed optical telescopes and a number of favorable circumstances justify studying the possibility of taking advantage of the CTA technology to develop FSOC ground stations.

In the following sections, these motivations, along with the considerations involving the utilization of CTA’s Cherenkov telescopes as FSOC ground stations, will be taken into account, emphasizing the ones that imply some kind of adaptation or modification from the original telescope design in order to make it suitable to work as a communication terminal. Given the current state of the CTA project, in which there is no final design for the telescopes yet, whenever possible, information from the CTA project has been used. In the cases in which the design is not finished or the data is not available, information from one of the currently most advanced Cherenkov telescopes under operation has been applied. These telescopes are Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) I & II (in the Roque de los Muchachos observatory at La Palma) [9

9. D. Ferenc, “The MAGIC gamma-ray observatory,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 553, 274–281 (2005). [CrossRef]

].

2. Motivations

3. Discussion

A. IACT Mirrors

Fig. 1. Reflectivity measurement of a MAGIC mirror in the visible spectrum according to [12] (a) and according to the authors of this paper (b).
Fig. 2. Reflectivity measurements of a MAGIC mirror in the IR band taken over different sections.

In Fig. 3, the average reflectivity measurements taken from 400 to 1700 nm are shown. Although the MAGIC mirrors were not designed aiming to optimize the reflectivity in the IR region, this is exactly what happens, especially at the communications wavelength, presenting a maximum around 1550 nm, where the reflectivity reaches 95%. It can be concluded that IACT mirrors can be directly used in FSOC, with even better performance than in Cherenkov astronomy itself and with very little difference from conventional astronomy telescopes: only 0.2 dB compared to the telescope based on a multilayer dielectric interference coating with 99.7% reflectivity [13

13. J. Chengg, The Principles of Astronomical Telescope Design (Springer, 2009).

].

Fig. 3. Average reflectivity measurements of a MAGIC mirror.

B. Focusing Capability and Detector

The focusing potential of a telescope determines its capability to concentrate the light gathered by the main reflector coming from a source at infinity and making it converge at one point. In both FSOC and conventional astronomy the source is so far away that it can be considered to be at infinity; hence the detector or camera is positioned at the focal length. IACT’s approach is different because the light to be detected comes not from infinity, but from an unknown distance between 6 and 20 km high in the atmosphere [14

14. F. Krennrich, “New generation atmospheric Cherenkov detectors,” Astropart. Phys. 11, 235–242 (1999). [CrossRef]

]. These telescopes are usually focused considering the source at 10 km, so any other distance is defocused, including infinity, and the camera is placed at a different distance from the focal length. The MAGIC telescope has a 17 m reflector with a f/D ratio of 1.03 [15

15. MAGIC Telescope Web site, Technical details, http://magic.mppmu.mpg.de/introduction/techdetails.html.

]; therefore the focal length f is 17.51 m. Applying the image formation equation [16

16. E. Hecht, Optics (Addison–Wesley, 2002).

]
1f=1s+1s=1s+1s=110km+1s+ε,
(1)
where s is the distance from the object and s the distance to the image, so if s=, then s= and using s=10km, it is possible to find the displacement ε from the original camera position that has to be applied in order to focus. This displacement is 3 cm, which is within the range that the camera is allowed to move in order to do the original calibration [17

17. R. Mirzoyan, Max Planck Institute, Munich, Germany (personal communication, 2012).

], so although in principle IACTs are not designed to focus at infinity, this can be achieved easily by a slight movement of the camera.

Regarding the displacement discussed, it is important to note another big difference between a communication and a Cherenkov telescope: while in the first one the photosensitive device is a single detector, IACTs use “full” cameras. These cameras are made up of thousands of single detectors—usually photomultiplier tubes (PMTs)—and weigh up to 2.5 tons [18

18. M. C. Medina, “The Cherenkov Telescope Array (CTA). An advance facility for the ground-based high energy gamma-ray astronomy,” presented at the 8th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE), Trieste, Italy, 8–10 September 2010.

], so such a movement is a permanent modification. Since the receiver, including the photodetector and the signal processing, is a much smaller system than the Cherenkov camera, the adaptation is certainly feasible. The original detectors cannot be reutilized due to their low quantum efficiency in 1550 nm—although their time response is adequate, as the Cherenkov events occur at a similar speed as communications—so they have to be replaced with an FSOC detector. This system would not differ from the ones that would be used in an equivalent deep-space optical ground station, so it will not be discussed here.

C. Field-of-View and Background Noise

The field-of-view (FOV) of a telescope is a fundamental feature to assess the signal-to-noise ratio (SNR) in an FSOC link. The relation between the FOV and the SNR is determined by the background noise if the FOV is much larger than the source, so the tendency should be to decrease the FOV as much as possible [19

19. V. A. Vilnrotter, “Background sources in optical communications,” JPL publication, 83-72, NASA contractor report, NASA CR-173457. NASA-JPL (California Institute of Technology, 1983).

]. In FSOC, the remote terminal is equivalent to a point source at infinity; hence, the FOV could be near zero, ideally. In practical terms, there are a number of limitations that move it away from zero. The first of them is the diffraction limit θ=2.44λ/D [20

20. A. Carrasco-Casado, “Diseño de un enlace de comunicaciones ópticas con marte,” Telecommunication Degree Final Project (Málaga University, 2005), p. 83.

]. In a Cherenkov telescope, an FOV close to this limit could never be used, even if the optics quality could achieve it, which is not the case. For example, a CTA–LST (large size telescope), with 24m in diameter, working in 1550 nm, would impose a diffraction limit of 0.0000045°, an unachievable FOV, as will be explained below.

There is another limiting factor above the diffraction limit: the pointing resolution. The FOV has to be at least equal to the pointing resolution to assure that the target is always seen by the telescope, although usually a larger security margin is chosen (Table 1). The design of the FOV in FSOC is in fact determined by this limit [21

21. M. Britcliffe, D. Hoppe, W. Roberts, and N. Page, “A ten-meter ground-station telescope for deep-space optical communications,” The Interplanetary Network Progress Report, IPN PR, 42-147 (NASA-Jet Propulsion Laboratory, 2009).

], rather than the diffraction limit. In Cherenkov and communication telescopes, a comparable ratio between FOV and pointing resolution is used. However, the FOV in FSOC telescopes is much narrower. In part, this is explained by the more demanding pointing of conventional telescopes compared to IACTs, which allows us to reduce the FOV. Although the pointing performance has been improving, there is still an important gap between them.

Table 1. Security Margin as a Function of Pointing and Field of View of Several Telescopes in Operation

table-icon
View This Table

Fig. 4. Background noise limitation in IACTs and FSOC telescopes.

D. Angular Resolution Improvement

MAGIC-II has a reflector surface of 247m2 made up of 249 square mirrors of 98.5 cm side each. The parabolic shape is defined by its f/D=1.03 with D=17m and f=17.51m, as was stated in Section 2.B. Each mirror was placed according to the equation of a 2D paraboloid centered in {0, 0} with the focus in {17.51, 0} and of a shape given by y2=4fx=70.04x, distributing the mirror segments equidistantly along this curve. Mirrors are spherical with different radii of curvature in each mirror depending on their distance to the center of the parabola, and they were obtained using the average (rcave) between the maximum (rcmax) and the minimum (rcmin) value in each segment. The simulation used 61,517 rays and resulted in a PSF of 2.61 cm in the FOV center, which translates into an angular extent of 0.085°, according to θFOV=2atan(PSF/2f). This figure is consistent with an experimental measurement, according to which the 2.61 cm would result in 79% encircled energy [25

25. D. M. Lane, “HyperStat online statistics,” http://davidmlane.com/normal.html (Rice University, 2007).

] considering that the PSF is a Gaussian distribution with σ=10.5mm, as measured in [26

26. J. Cortina, F. Goebel, and T. Schweizer, “Technical performance of the MAGIC telescopes,” arXiv:0907.1211 (2009).

]. The agreement between the simulated result and the experimental measurement establishes the validity of this simulation to at least qualitatively assess the proposals for improving the PSF. In this way, it is possible to check the origin of the poor angular resolution compared to the PSF of an ideal parabolic-shape version [Fig. 5(a)] of the MAGIC-II telescope and its segmented version [Fig. 5(b)].

Fig. 5. 33-ray simulation and 61,517-ray PSF estimation in MAGIC-II single mirror (a) and segmented mirror (b).

E. Detection Size Optimization

If the PSF could be improved at least up to the point that it is the pointing resolution that limits the FOV, then the FSOC performance of IACTs could be comparable to conventional telescopes and all the advantages of Cherenkov telescopes, especially larger apertures and smaller costs, would manifest. Nevertheless, in this section another approach is proposed in order to deal with the poor PSF, assuming that such improvement is not carried out. In any telescope, the detection area in the focal plane determines the FOV [23

23. A. Merriman, “Search for very high energy gamma radiation from the Starburst Galaxy IC 342,” Ph.D. thesis (Galway-Mayo Institute of Technology, 2010), p. 34.

]. In an IACT, the large PSF imposes a large detection area if the entire signal has to be collected. However, if the detection area is reduced, the FOV is also reduced and so is the background noise. The drawback is that less power reaches the detector.

Fig. 6. Relation between detection area and FOV.
Fig. 7. Background noise power, signal power, sensibility, and SNR as a function of the detection size.

F. Pointing and Tracking

Pointing capability in Cherenkov telescopes does not present any special requirement regarding resolution compared to conventional telescopes; therefore commercial components are usually employed [27

27. T. Bretz, D. Dorner, R. M. Wagner, and P. Sawallisch, “The drive system of the major atmospheric gamma-ray imaging Cherenkov telescope,” Astropart. Phys. 31, 92–101 (2009). [CrossRef]

]. Pointing resolution mainly relies on shaft encoders, which are used to accurately determine the information of instantaneous position of azimut/elevation gears and close the feedback loop with the target position. IACT’s maximum resolution is limited by the nominal shaft encoder resolution, which determines the number of different positions that can be encoded. Based on this specification, it is possible to compare (Fig. 8) the maximum resolution of several telescopes, obtaining the pointing resolution as 360°/2N, with N as the encoder resolution in bits. It is clear that IACTs’ pointing is worse than in conventional telescopes, which can be explained through their poor optical resolution, which makes better pointing useless, so improvements are indeed possible in order to reduce the FOV.

Fig. 8. Encoder resolution versus pointing resolution for several telescopes [3439].

G. Daylight and Shared Operation

In this paper, the case for reutilization of IACTs has been focused on adapting a telescope for FSOC operation exclusively. However, there exists the possibility of sharing the same telescope for astronomy and lasercom in order to make the most of it, as there are times during which it cannot be used for observation, namely, during the day or with moonlight. The most important adaptations have their origin in the different spectral sensitivity and the different focusing requirements. The first one makes it necessary to use different detectors for each purpose, as Cherenkov light and communication signals are in separate spectral regions. Fortunately, the FOV requirements of each operation allow using compatible detectors: gamma-ray astronomy demands a wide FOV, which needs a large camera, and lasercom demands a narrow FOV, which needs a small photodetector. This way, it is certainly possible to replace one of the pixels of the Cherenkov camera with the FSOC detector. A similar approach was carried out in 2005 when the central pixel of the MAGIC camera was replaced with a detector dedicated to visible astronomy [43

43. F. Lucarelli, J. A. Barrio, P. Antoranz, M. Asensio, M. Camara, J. L. Contreras, M. V. Fonseca, M. Lopez, J. M. Miranda, I. Oya, R. De Los Reyes, R. Firpo, N. Sidro, F. Goebel, E. Lorenz, and N. Otte, “The central pixel of the MAGIC telescope for optical observations,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 589, 415–424(2008). [CrossRef]

]. The PMTs used in IACTs are extremely sensitive, up to the point that they could be damaged if exposed to daylight, so a protection mask should cover the PMTs excluding the communication pixel, blocking the light to the Cherenkov camera, and letting it pass to the FSOC detector.

As was stated, the second big difference between Cherenkov operation and FSOC operation refers to the focusing requirements: in Section 3.B, the need to move the camera 3 cm away from the focus was explained. This reallocation was justified by means of focusing at infinity, instead of at 10 km. If the telescope has to be used for both astronomy and lasercom, both focusing capabilities have to be dealt with, and moving the camera is not a viable solution, as it involves a manual calibration each time—although a simple solution could be to move only the communication detector, if this is physically possible. A more suitable solution is proposed here involving the use of the active mirror control (AMC). AMC is a system that allows the readjustment of each mirror panel to a preknown position in order to correct in real time the deformations that take place in the reflector structure due to variations of mass distribution with the different pointing direction [44

44. M. Garczarczyk, M. Merck, V. Danielyan, E. Lorenz, R. Mirzoyan, and A. Laille, “The active mirror control of the MAGIC telescope,” in Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan (Universal Academy, 2003), p. 2935.

]. By using this system it is possible to change the paraboloid shape enough to focus at a different focal point, so if the camera is placed in its original position—17.54 m from the reflector—the reflector could be reshaped to focus at infinity as if the focal point was 17.54 m and not 17.51 m, as it actually is. A simulation has been performed to validate this proposal using the MAGIC paraboloid that was modeled in Section 3.D. The mirror segments that made up the reflector were adjusted to focus a point source at infinity in 17.54 m, and the PSF was measured. This new PSF resulted in 2.67 cm, which is less than half the PSF in the same position before the realignment, and a very close result to the original PSF moving the camera to 17.51 m—only 2.25% larger than this 2.61 cm PSF. This proposal allows switching between the Cherenkov mode and the lasercom mode almost instantly and does not interfere with the normal operation of AMC correction since the maximum movement of a mirror is 0.02°, well below the AMC dynamic range.

4. Conclusions

In this paper, a proposal has been made to reutilize the technology developed in the gamma-ray telescopes of the CTA project for the implementation of enhanced optical ground stations to support missions that could span from LEO to deep space and could extend the range of distance and performance of FSOCs.

The reasons that justify this study are varied, and the most relevant include a cost reduction in the development of telescopes with very large apertures, which provides the highest receiver gains ever considered in an FSOC link. Besides, CTA facilities share a number of features with lasercom, such as favorable atmospheric conditions and fast electronics and communications infrastructure, which allows a natural integration of FSOC terminals within the CTA facilities.

In this study no major limitations have been found that disable Cherenkov telescopes from operating as FSOC ground stations after the required modifications. Since to our knowledge this is the first time this proposal has been suggested, further research is needed on how to implement each adaptation in detail and how these terminals would behave in a real communication link, which is being currently carried out by the authors of this paper.

We are thankful for the support by Comunidad Autónoma de Madrid (grant S2009/ESP-1781, FACTOTEM-2) and by CDTI Centro para el Desarrollo Tecnológico Industrial (grant IDC-20101048 awarded to the company INSA within the Industry of Science Plan), and the helpful assistance by José Luis Contreras, from High Energy Physics Group, Universidad Complutense de Madrid.

References

1.

H. Hemmati, Deep Space Optical Communications (Jet Propulsion Laboratory, 2005).

2.

A. Biswas and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99, 2020–2039 (2011).

3.

R. J. Cesarone, D. S. Abraham, S. Shambayati, and J. Rush, “Deep-space optical communications: visions, trends, and prospects,” in Proceedings of the IEEE International Conference on Space Optical Systems and Applications (ICSOS) (IEEE, 2011), pp. 410–423.

4.

J. M. Sánchez Pena, C. Marcos, A. Carrasco-Casado, R. Vergaz, and R. Zaera, in Advances in Spacecraft Technologies (INTECH, 2011), Chap. 5.

5.

H. Hemmati, A. Biswas, and D. M. Boroson, “30 dB data rate improvement for interplanetary laser communication,” Proc. SPIE 6877, 687707 (2008).

6.

The Cherenkov Telescope Array (CTA), http://www.cta-observatory.org.

7.

M. Doro, “CTA—a project for a new generation of Cherenkov telescopes,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 630, 285–290 (2011). [CrossRef]

8.

C. Schultz, “Novel all-aluminium mirrors of the MAGIC telescope project and low light level silicon photo-multiplier sensors for future telescopes,” Master’s thesis (Max Planck Institute, 2007), p. 59.

9.

D. Ferenc, “The MAGIC gamma-ray observatory,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 553, 274–281 (2005). [CrossRef]

10.

K. E. Wilson, J. R. Lesh, and T. Y. Yan, “Gopex: a laser uplink to the Galileo spacecraft on its way to Jupiter,” Proc. SPIE 1866, 138–146 (1993). [CrossRef]

11.

Interagency Operations Advisory Group, “Optical Link Study Group,” Technical report (IOAG, 2011).

12.

D. Bastieri, D. Agguiaro, J. Arnold, C. Bigongiari, F. Dazzi, M. Doro, N. Galante, M. Garczarczyk, E. Lorenz, D. Maniero, M. Mariotti, R. Mirzoyan, A. Moralejo, D. Pascoli, A. Pepato, L. Peruzzo, M. Rebeschini, A. Saggion, P. Sartori, V. Scalzotto, D. Tescaro, and N. Tonello, “The mirrors for the MAGIC telescopes,” arXiv:astro-ph/0508274 (2005), pp. 7–10.

13.

J. Chengg, The Principles of Astronomical Telescope Design (Springer, 2009).

14.

F. Krennrich, “New generation atmospheric Cherenkov detectors,” Astropart. Phys. 11, 235–242 (1999). [CrossRef]

15.

MAGIC Telescope Web site, Technical details, http://magic.mppmu.mpg.de/introduction/techdetails.html.

16.

E. Hecht, Optics (Addison–Wesley, 2002).

17.

R. Mirzoyan, Max Planck Institute, Munich, Germany (personal communication, 2012).

18.

M. C. Medina, “The Cherenkov Telescope Array (CTA). An advance facility for the ground-based high energy gamma-ray astronomy,” presented at the 8th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE), Trieste, Italy, 8–10 September 2010.

19.

V. A. Vilnrotter, “Background sources in optical communications,” JPL publication, 83-72, NASA contractor report, NASA CR-173457. NASA-JPL (California Institute of Technology, 1983).

20.

A. Carrasco-Casado, “Diseño de un enlace de comunicaciones ópticas con marte,” Telecommunication Degree Final Project (Málaga University, 2005), p. 83.

21.

M. Britcliffe, D. Hoppe, W. Roberts, and N. Page, “A ten-meter ground-station telescope for deep-space optical communications,” The Interplanetary Network Progress Report, IPN PR, 42-147 (NASA-Jet Propulsion Laboratory, 2009).

22.

M. Doro, “Novel reflective elements and indirect dark matter searches for MAGIC II and future IACTs,” Ph.D. thesis (Universitá degli Studi di Padova, 2008).

23.

A. Merriman, “Search for very high energy gamma radiation from the Starburst Galaxy IC 342,” Ph.D. thesis (Galway-Mayo Institute of Technology, 2010), p. 34.

24.

A. Schliesser and R. Mirzoyan, “Wide-field prime-focus imaging atmospheric Cherenkov telescopes: a systematic study,” Astropart. Phys. 24, 382–390 (2005). [CrossRef]

25.

D. M. Lane, “HyperStat online statistics,” http://davidmlane.com/normal.html (Rice University, 2007).

26.

J. Cortina, F. Goebel, and T. Schweizer, “Technical performance of the MAGIC telescopes,” arXiv:0907.1211 (2009).

27.

T. Bretz, D. Dorner, R. M. Wagner, and P. Sawallisch, “The drive system of the major atmospheric gamma-ray imaging Cherenkov telescope,” Astropart. Phys. 31, 92–101 (2009). [CrossRef]

28.

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, C. Baixeras, J. A. Barrio, H. Bartko, D. Bastieri, J. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, J. A. Coarasa, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curtef, V. Danielyan, F. Dazzi, A. De Angelis, C. Delgado, R. de los Reyes, B. De Lotto, E. Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernández, R. Firpo, J. Flix, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. García-López, M. Garczarczyk, M. Gaug, M. Giller, F. Goebe, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Höhne, J. Hose, C. C. Hsu, P. Jacon, T. Jogler, O. Kalekin, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, T. Lenisa, P. Liebing, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheim, O. Mansutti, M. Mariotti, M. Martínez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, K. Nilsson, J. Ninkovic, E. Oña-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Panniello, R. Paoletti, J. M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna, M. Persic, L. Peruzzo, A. Piccioli, M. Poller, E. Prandini, N. Puchades, A. Raymers, W. Rhode, M. Ribó, J. Rico, M. Rissi, A. Robert, S. Rügamer, A. Saggion, A. Sánchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S. N. Shore, N. Sidro, A. Sillanpää, D. Sobczynska, A. Stamerra, L. S. Stark, L. Takalo, P. Temnikov, D. Tescaro, M. Teshima, N. Tonello, D. F. Torres, N. Turini, H. Vankov, V. Vitale, R. M. Wagner, T. Wibig, W. Wittek, R. Zanin, and J. Zapatero, “Magic upper limits on the very high energy emission from gamma-ray bursts,” Astrophys. J. 667, 358–366 (2007). [CrossRef]

29.

The CTA Consortium, “Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy,” Exp. Astron. 32, 193–316 (2011). [CrossRef]

30.

K. Bernlöhr, O. B. Bigas, R. Canestrari, C. Delgado, A. Förster, G. Hermann, J. Hinton, B. Khélifi, G. Pareschi, and R. White, “Level A: CTA system performance requirements,” Reference Documents for Preliminary CTA Performance Requirements Level A and B, TPC‐SPECS/110331a (2011), ftp://ftp.oact.inaf.it/pub/gle/vincenzo/PrelPerfRequ_comb_20110331.pdf.

31.

K. Wilson, A. Vaughan, J. Wu, D. Mayes, J. Maloney, and R. Sobek, “Preliminary characterization results of the optical communications telescope laboratory telescope,” The Interplanetary Network Progress Report 42-161 (NASA-Jet Propulsion Laboratory, 2005).

32.

M. Britcliffe, D. Hoppe, W. Roberts, and N. Page, “A ten-meter ground-station telescope for deep-space optical communications,” The Interplanetary Network Progress Report 42-147 (NASA-Jet Propulsion Laboratory, 2001).

33.

G. Maral and M. Bousquet, Satellite Communications Systems: Systems, Techniques and Technology (Wiley, 2008).

34.

M. Chi, “Lecture for pattern recognition,” SCS Fudan University, China, Lecture 14 (2009), p. 23.

35.

R. Koul, A. K. Tickoo, S. K. Kaul, S. R. Kaul, N. Kumar, K. K. Yadav, N. Bhatt, K. Venugopal, H. C. Goyal, M. Kothari, P. Chandra, R. C. Rannot, V. K. Dhar, M. K. Koul, R. K. Kaul, S. Kotwal, K. Chanchalani, S. Thoudam, N. Chouhan, M. Sharma, S. Bhattacharyya, and S. Sahayanathan, “The TACTIC atmospheric Cherenkov imaging 757 telescope,” Nucl. Instrum. Methods Phys. Res. A Accel., Spectrom. Detect. Assoc. Equip. 578, 548–564 (2007).

36.

Hess Telescopes, http://www.mpi-hd.mpg.de/hfm/HESS/pages/about/telescopes.

37.

Y. Yang, N. P. Rees, and T. Chuter, “Application of a Kalman filter at UKIRT” in Astronomical Data Analysis Software and Systems ASP IX (Astronomical Society of the Pacific, 2000), Vol. 216, pp. 279–282.

38.

Renishaw Website, “RESOLUTE rotary (angle) absolute encoder,” http://www.renishaw.com/en/resolute-rotary-angle-absolute-encoder-options--10939.

39.

A. A. Stark, R. A. Chamberlin, J. G. Ingalls, J. Cheng, and G. Wright, “Optical and mechanical design of the Antarctic Submillimeter Telescope and Remote Observatory,” Rev. Sci. Instrum. 68, 2200–2213 (1997). [CrossRef]

40.

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, C. Baixeras, J. A. Barrio, H. Bartko, D. Bastieri, J. K. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, Jose Antonio Coarasa Perez, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curtef, V. Danielyan, F. Dazzi, C. Delgado, A. De Angelisde, R. los Reyes, B. De Lotto, E. Domingo-Santamaria, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernandez, R. Firpo, J. Flix Molina, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. Garcia-Lopez, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Hohne, J. Hose, C. C. Hsu, P. Jacon, T. Jogler, O. Kalekin, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, P. Liebing, E. Lindfors, S. Lombardi, F. Longo, J. Lopez, M. Lopez, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheima, O. Mansutti, M. Mariotti, M. Martinez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, K. Nilsson, J. Ninkovic, E. Ona-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Panniello, R. Paoletti, J. M. Paredes, M. Pasanen, L. Peruzzo, A. Piccioli, M. Poller, N. Puchades, E. Prandini, A. Raymers, W. Rhode, M. Ribo, J. Rico, M. Rissi, A. Robert, S. Rugamer, A. Saggion, A. Sanchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S. N. Shore, N. Sidro, A. Sillanpaa, D. Sobczynska, A. Stamerra, L. Stark, L. Takalo, P. Temnikov, D. Tescaro, M. Teshima, N. Tonello, D. F. Torres, N. Turini, V. Vitale, R. M. Wagner, T. Wibig, W. Wittek, F. Zandane, R. Zanin, and J. Zapatero, “Very high energy gamma-ray observations during moonlight and twilight with the MAGIC telescope,” arXiv:astro-ph/0702475 (2007).

41.

A. Biswas, F. Khatri, and D. Boroson, “Near sun free-space optical communications from space,” in Proceedings of IEEE Aerospace Conference (IEEE, 2006), pp. 1395–1402.

42.

W. T. Roberts, G. G. Ortiz, and T. A. Boyd, “Daytime use of astronomical telescopes for deep-space optical links,” Proc. SPIE 6105, 61050G (2006). [CrossRef]

43.

F. Lucarelli, J. A. Barrio, P. Antoranz, M. Asensio, M. Camara, J. L. Contreras, M. V. Fonseca, M. Lopez, J. M. Miranda, I. Oya, R. De Los Reyes, R. Firpo, N. Sidro, F. Goebel, E. Lorenz, and N. Otte, “The central pixel of the MAGIC telescope for optical observations,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 589, 415–424(2008). [CrossRef]

44.

M. Garczarczyk, M. Merck, V. Danielyan, E. Lorenz, R. Mirzoyan, and A. Laille, “The active mirror control of the MAGIC telescope,” in Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan (Universal Academy, 2003), p. 2935.

OCIS Codes
(110.6770) Imaging systems : Telescopes
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Imaging Systems

History
Original Manuscript: January 14, 2013
Manuscript Accepted: February 20, 2013
Published: April 10, 2013

Citation
Alberto Carrasco-Casado, Mariafernanda Vilera, Ricardo Vergaz, and Juan Francisco Cabrero, "Feasibility of utilizing Cherenkov Telescope Array gamma-ray telescopes as free-space optical communication ground stations," Appl. Opt. 52, 2353-2362 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hemmati, Deep Space Optical Communications (Jet Propulsion Laboratory, 2005).
  2. A. Biswas and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99, 2020–2039 (2011).
  3. R. J. Cesarone, D. S. Abraham, S. Shambayati, and J. Rush, “Deep-space optical communications: visions, trends, and prospects,” in Proceedings of the IEEE International Conference on Space Optical Systems and Applications (ICSOS) (IEEE, 2011), pp. 410–423.
  4. J. M. Sánchez Pena, C. Marcos, A. Carrasco-Casado, R. Vergaz, and R. Zaera, in Advances in Spacecraft Technologies (INTECH, 2011), Chap. 5.
  5. H. Hemmati, A. Biswas, and D. M. Boroson, “30 dB data rate improvement for interplanetary laser communication,” Proc. SPIE 6877, 687707 (2008).
  6. The Cherenkov Telescope Array (CTA), http://www.cta-observatory.org .
  7. M. Doro, “CTA—a project for a new generation of Cherenkov telescopes,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 630, 285–290 (2011). [CrossRef]
  8. C. Schultz, “Novel all-aluminium mirrors of the MAGIC telescope project and low light level silicon photo-multiplier sensors for future telescopes,” Master’s thesis (Max Planck Institute, 2007), p. 59.
  9. D. Ferenc, “The MAGIC gamma-ray observatory,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 553, 274–281 (2005). [CrossRef]
  10. K. E. Wilson, J. R. Lesh, and T. Y. Yan, “Gopex: a laser uplink to the Galileo spacecraft on its way to Jupiter,” Proc. SPIE 1866, 138–146 (1993). [CrossRef]
  11. Interagency Operations Advisory Group, “Optical Link Study Group,” Technical report (IOAG, 2011).
  12. D. Bastieri, D. Agguiaro, J. Arnold, C. Bigongiari, F. Dazzi, M. Doro, N. Galante, M. Garczarczyk, E. Lorenz, D. Maniero, M. Mariotti, R. Mirzoyan, A. Moralejo, D. Pascoli, A. Pepato, L. Peruzzo, M. Rebeschini, A. Saggion, P. Sartori, V. Scalzotto, D. Tescaro, and N. Tonello, “The mirrors for the MAGIC telescopes,” arXiv:astro-ph/0508274 (2005), pp. 7–10.
  13. J. Chengg, The Principles of Astronomical Telescope Design (Springer, 2009).
  14. F. Krennrich, “New generation atmospheric Cherenkov detectors,” Astropart. Phys. 11, 235–242 (1999). [CrossRef]
  15. MAGIC Telescope Web site, Technical details, http://magic.mppmu.mpg.de/introduction/techdetails.html .
  16. E. Hecht, Optics (Addison–Wesley, 2002).
  17. R. Mirzoyan, Max Planck Institute, Munich, Germany (personal communication, 2012).
  18. M. C. Medina, “The Cherenkov Telescope Array (CTA). An advance facility for the ground-based high energy gamma-ray astronomy,” presented at the 8th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE), Trieste, Italy, 8–10 September 2010.
  19. V. A. Vilnrotter, “Background sources in optical communications,” JPL publication, 83-72, NASA contractor report, NASA CR-173457. NASA-JPL (California Institute of Technology, 1983).
  20. A. Carrasco-Casado, “Diseño de un enlace de comunicaciones ópticas con marte,” Telecommunication Degree Final Project (Málaga University, 2005), p. 83.
  21. M. Britcliffe, D. Hoppe, W. Roberts, and N. Page, “A ten-meter ground-station telescope for deep-space optical communications,” The Interplanetary Network Progress Report, IPN PR, 42-147 (NASA-Jet Propulsion Laboratory, 2009).
  22. M. Doro, “Novel reflective elements and indirect dark matter searches for MAGIC II and future IACTs,” Ph.D. thesis (Universitá degli Studi di Padova, 2008).
  23. A. Merriman, “Search for very high energy gamma radiation from the Starburst Galaxy IC 342,” Ph.D. thesis (Galway-Mayo Institute of Technology, 2010), p. 34.
  24. A. Schliesser and R. Mirzoyan, “Wide-field prime-focus imaging atmospheric Cherenkov telescopes: a systematic study,” Astropart. Phys. 24, 382–390 (2005). [CrossRef]
  25. D. M. Lane, “HyperStat online statistics,” http://davidmlane.com/normal.html (Rice University, 2007).
  26. J. Cortina, F. Goebel, and T. Schweizer, “Technical performance of the MAGIC telescopes,” arXiv:0907.1211 (2009).
  27. T. Bretz, D. Dorner, R. M. Wagner, and P. Sawallisch, “The drive system of the major atmospheric gamma-ray imaging Cherenkov telescope,” Astropart. Phys. 31, 92–101 (2009). [CrossRef]
  28. J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, C. Baixeras, J. A. Barrio, H. Bartko, D. Bastieri, J. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, J. A. Coarasa, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curtef, V. Danielyan, F. Dazzi, A. De Angelis, C. Delgado, R. de los Reyes, B. De Lotto, E. Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernández, R. Firpo, J. Flix, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. García-López, M. Garczarczyk, M. Gaug, M. Giller, F. Goebe, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Höhne, J. Hose, C. C. Hsu, P. Jacon, T. Jogler, O. Kalekin, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, T. Lenisa, P. Liebing, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheim, O. Mansutti, M. Mariotti, M. Martínez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, K. Nilsson, J. Ninkovic, E. Oña-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Panniello, R. Paoletti, J. M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna, M. Persic, L. Peruzzo, A. Piccioli, M. Poller, E. Prandini, N. Puchades, A. Raymers, W. Rhode, M. Ribó, J. Rico, M. Rissi, A. Robert, S. Rügamer, A. Saggion, A. Sánchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S. N. Shore, N. Sidro, A. Sillanpää, D. Sobczynska, A. Stamerra, L. S. Stark, L. Takalo, P. Temnikov, D. Tescaro, M. Teshima, N. Tonello, D. F. Torres, N. Turini, H. Vankov, V. Vitale, R. M. Wagner, T. Wibig, W. Wittek, R. Zanin, and J. Zapatero, “Magic upper limits on the very high energy emission from gamma-ray bursts,” Astrophys. J. 667, 358–366 (2007). [CrossRef]
  29. The CTA Consortium, “Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy,” Exp. Astron. 32, 193–316 (2011). [CrossRef]
  30. K. Bernlöhr, O. B. Bigas, R. Canestrari, C. Delgado, A. Förster, G. Hermann, J. Hinton, B. Khélifi, G. Pareschi, and R. White, “Level A: CTA system performance requirements,” Reference Documents for Preliminary CTA Performance Requirements Level A and B, TPC‐SPECS/110331a (2011), ftp://ftp.oact.inaf.it/pub/gle/vincenzo/PrelPerfRequ_comb_20110331.pdf .
  31. K. Wilson, A. Vaughan, J. Wu, D. Mayes, J. Maloney, and R. Sobek, “Preliminary characterization results of the optical communications telescope laboratory telescope,” The Interplanetary Network Progress Report 42-161 (NASA-Jet Propulsion Laboratory, 2005).
  32. M. Britcliffe, D. Hoppe, W. Roberts, and N. Page, “A ten-meter ground-station telescope for deep-space optical communications,” The Interplanetary Network Progress Report 42-147 (NASA-Jet Propulsion Laboratory, 2001).
  33. G. Maral and M. Bousquet, Satellite Communications Systems: Systems, Techniques and Technology (Wiley, 2008).
  34. M. Chi, “Lecture for pattern recognition,” SCS Fudan University, China, Lecture 14 (2009), p. 23.
  35. R. Koul, A. K. Tickoo, S. K. Kaul, S. R. Kaul, N. Kumar, K. K. Yadav, N. Bhatt, K. Venugopal, H. C. Goyal, M. Kothari, P. Chandra, R. C. Rannot, V. K. Dhar, M. K. Koul, R. K. Kaul, S. Kotwal, K. Chanchalani, S. Thoudam, N. Chouhan, M. Sharma, S. Bhattacharyya, and S. Sahayanathan, “The TACTIC atmospheric Cherenkov imaging 757 telescope,” Nucl. Instrum. Methods Phys. Res. A Accel., Spectrom. Detect. Assoc. Equip. 578, 548–564 (2007).
  36. Hess Telescopes, http://www.mpi-hd.mpg.de/hfm/HESS/pages/about/telescopes .
  37. Y. Yang, N. P. Rees, and T. Chuter, “Application of a Kalman filter at UKIRT” in Astronomical Data Analysis Software and Systems ASP IX (Astronomical Society of the Pacific, 2000), Vol. 216, pp. 279–282.
  38. Renishaw Website, “RESOLUTE rotary (angle) absolute encoder,” http://www.renishaw.com/en/resolute-rotary-angle-absolute-encoder-options--10939 .
  39. A. A. Stark, R. A. Chamberlin, J. G. Ingalls, J. Cheng, and G. Wright, “Optical and mechanical design of the Antarctic Submillimeter Telescope and Remote Observatory,” Rev. Sci. Instrum. 68, 2200–2213 (1997). [CrossRef]
  40. J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, C. Baixeras, J. A. Barrio, H. Bartko, D. Bastieri, J. K. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, Jose Antonio Coarasa Perez, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curtef, V. Danielyan, F. Dazzi, C. Delgado, A. De Angelisde, R. los Reyes, B. De Lotto, E. Domingo-Santamaria, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernandez, R. Firpo, J. Flix Molina, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. Garcia-Lopez, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Hohne, J. Hose, C. C. Hsu, P. Jacon, T. Jogler, O. Kalekin, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, P. Liebing, E. Lindfors, S. Lombardi, F. Longo, J. Lopez, M. Lopez, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheima, O. Mansutti, M. Mariotti, M. Martinez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, K. Nilsson, J. Ninkovic, E. Ona-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Panniello, R. Paoletti, J. M. Paredes, M. Pasanen, L. Peruzzo, A. Piccioli, M. Poller, N. Puchades, E. Prandini, A. Raymers, W. Rhode, M. Ribo, J. Rico, M. Rissi, A. Robert, S. Rugamer, A. Saggion, A. Sanchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S. N. Shore, N. Sidro, A. Sillanpaa, D. Sobczynska, A. Stamerra, L. Stark, L. Takalo, P. Temnikov, D. Tescaro, M. Teshima, N. Tonello, D. F. Torres, N. Turini, V. Vitale, R. M. Wagner, T. Wibig, W. Wittek, F. Zandane, R. Zanin, and J. Zapatero, “Very high energy gamma-ray observations during moonlight and twilight with the MAGIC telescope,” arXiv:astro-ph/0702475 (2007).
  41. A. Biswas, F. Khatri, and D. Boroson, “Near sun free-space optical communications from space,” in Proceedings of IEEE Aerospace Conference (IEEE, 2006), pp. 1395–1402.
  42. W. T. Roberts, G. G. Ortiz, and T. A. Boyd, “Daytime use of astronomical telescopes for deep-space optical links,” Proc. SPIE 6105, 61050G (2006). [CrossRef]
  43. F. Lucarelli, J. A. Barrio, P. Antoranz, M. Asensio, M. Camara, J. L. Contreras, M. V. Fonseca, M. Lopez, J. M. Miranda, I. Oya, R. De Los Reyes, R. Firpo, N. Sidro, F. Goebel, E. Lorenz, and N. Otte, “The central pixel of the MAGIC telescope for optical observations,” Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 589, 415–424(2008). [CrossRef]
  44. M. Garczarczyk, M. Merck, V. Danielyan, E. Lorenz, R. Mirzoyan, and A. Laille, “The active mirror control of the MAGIC telescope,” in Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan (Universal Academy, 2003), p. 2935.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited