Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes

Not Accessible

Your library or personal account may give you access

Abstract

The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Hard x-ray telescopes to be onboard ASTRO-H

Hisamitsu Awaki, Hideyo Kunieda, Manabu Ishida, Hironori Matsumoto, Yasunori Babazaki, Tadatsugu Demoto, Akihiro Furuzawa, Yoshito Haba, Takayuki Hayashi, Ryo Iizuka, Kazunori Ishibashi, Naoki Ishida, Masayuki Itoh, Toshihiro Iwase, Tatsuro Kosaka, Daichi Kurihara, Yuuji Kuroda, Yoshitomo Maeda, Yoshifumi Meshino, Ikuyuki Mitsuishi, Yuusuke Miyata, Takuya Miyazawa, Hideyuki Mori, Housei Nagano, Yoshiharu Namba, Yasushi Ogasaka, Keiji Ogi, Takashi Okajima, Shigetaka Saji, Fumiya Shimasaki, et al.
Appl. Opt. 53(32) 7664-7676 (2014)

Deformable primary mirror for a space telescope

J. G. R. Hansen, R. M. Richard, and R. R. Shannon
Appl. Opt. 21(14) 2620-2630 (1982)

Sub-nanometer flattening of 45  cm long, 45 actuator x-ray deformable mirror

Lisa A. Poyneer, Thomas McCarville, Tommaso Pardini, David Palmer, Audrey Brooks, Michael J. Pivovaroff, and Bruce Macintosh
Appl. Opt. 53(16) 3404-3414 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.