OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 3 — Nov. 1, 2009

Optical Antennas

Palash Bharadwaj, Bradley Deutsch, and Lukas Novotny  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 3, pp. 438-483 (2009)
http://dx.doi.org/10.1364/AOP.1.000438


View Full Text Article

Acrobat PDF (1688 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical antennas are an emerging concept in physical optics. Similar to radiowave and microwave antennas, their purpose is to convert the energy of free propagating radiation to localized energy, and vice versa. Optical antennas exploit the unique properties of metal nanostructures, which behave as strongly coupled plasmas at optical frequencies. The tutorial provides an account of the historical origins and the basic concepts and parameters associated with optical antennas. It also reviews recent work in the field and discusses areas of application, such as light-emitting devices, photovoltaics, and spectroscopy.

© 2009 Optical Society of America

OCIS Codes
(000.2850) General : History and philosophy
(260.0260) Physical optics : Physical optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Micro-optical Devices

History
Original Manuscript: March 12, 2009
Revised Manuscript: July 4, 2009
Manuscript Accepted: July 8, 2009
Published: August 11, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Palash Bharadwaj, Bradley Deutsch, and Lukas Novotny, "Optical Antennas," Adv. Opt. Photon. 1, 438-483 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-3-438


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. ISO Standard ISO/TS 27687, TC 229 (ISO, 2008).
  2. Aristotle, De Animalibus, Theodorus Gaza, trans. (Johannes de Colonia and Johannes Manthen, 1476).
  3. Aristotle, History of Animals (c. 340 B.C.E.).
  4. T. G. Tucker, “Antemna, antenna,” in A Concise Etymological Dictionary of Latin (Max Niemeyer Verlag, 1931), p. 19.
  5. C. Watkins, “ten-,” in The American Heritage Dictionary of Indo-European Roots (Houghton Mifflin, 2000), p. 90.
  6. E. Klein, “Antenna,” in A Comprehensive Etymological Dictionary of the English Language (Elsevier, 1966), p. 82.
  7. J. A. Simpson and E. S. C. Weiner, “Antennas,” in The Oxford English Dictionary (Oxford Univ. Press, 1989), p. 506.
  8. F. E. Gardiol and Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124-136 (2006).
  9. W. P. Jolly, Marconi (Constable, 1972).
  10. G. Marconi, “Wireless telegraphic communication,” Nobel Lecture, December 11, 1909.
  11. G. W. Pierce, “Experiments on resonance in wireless telegraph circuits,” Phys. Rev. 19, 196-217 (1904).
  12. J. A. Fleming, “Telegraphy,” The New Volumes of the Encyclopedia Britannica, 10th ed., vol. XXXIII (1902).
  13. S. Walter, E. Bolmont, and A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
  14. A. Broca, La télégraphie sans fils (Gauthier Villars, 1899).
  15. B. Franklin, in The Papers of Benjamin Franklin, L.W.Labaree, ed. (Yale Univ. Press, 1961), vol. 3, pp. 156-164.
  16. M. C. H. E. Rodriguez-Garcia, “Systéme de télégraphie sans fil par ondes hertziennes,” French Patent 301264 (June 14, 1900).
  17. E. Ducretet, “Transmitting and receiving apparatus for Hertzian waves,” U.S. Patent 726413 (April 28, 1903).
  18. M. C. H. E. Rodriguez-Garcia, “Wireless telegraphy,” U.S. Patent 795762 (July 25, 1905).
  19. Antenna Standards Committee of the IEEE Antennas and Propagation Society, “IEEE standard definitions of terms for antennas,” IEEE Std 145-1993 (IEEE, 1993).
  20. L. Novotny, “The history of near-field optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), vol. 50, pp. 137-184.
  21. Nobel Lectures, Chemistry 1922-1941 (Elsevier, 1966).
  22. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538-1540 (1985). [CrossRef]
  23. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef]
  24. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  25. G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726-735 (1982).
  26. M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163-166 (1974). [CrossRef]
  27. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  28. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215-5217 (1977). [CrossRef]
  29. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023-3037 (1980). [CrossRef]
  30. A. Wokaun, J. Gordon, and P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957-960 (1982). [CrossRef]
  31. A.D.Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  32. H. Metiu, Surface Enhanced Spectroscopy, vol. 17 of Progress in Surface Science, I.Prigogine and S.A.Rice, eds. (Pergamon, 1984), pp. 153-320.
  33. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Raleigh limit,” J. Opt. Soc. Am. B 2, 931-949 (1985). [CrossRef]
  34. U. C. Fischer and D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458-461 (1989). [CrossRef]
  35. J. Jackson, S. Westcott, L. Hirsch, J. West, and N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257-259 (2003). [CrossRef]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419-422 (2003). [CrossRef]
  37. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  38. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  39. L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401-402 (1968). [CrossRef]
  40. L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8-10 (1970). [CrossRef]
  41. A. Kirschke and K. Rothammel, Rothammels Antennenbuch (DARC Verlag, 2001).
  42. G. Boreman, “Infrared microantennas,” Proc. SPIE 3110, 882-885 (1997).
  43. J. Alda, J. Rico-García, J. López-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230-S234 (2005). [CrossRef]
  44. F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418-428 (2004).
  45. C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, and F. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485-6490 (1997). [CrossRef]
  46. I. Codreanu and G. D. Boreman, “Infrared microstrip dipole antennas--FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381-383 (2001). [CrossRef]
  47. C. Middlebrook, P. Krenz, B. Lail, and G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719-723 (2008). [CrossRef]
  48. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997). [CrossRef]
  49. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.
  50. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., Mineola, NY, 1987).
  51. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
  52. K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003). [CrossRef]
  53. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  54. K. H. Drexhage, M. Fleck, F. Shäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).
  55. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233-236 (1981). [CrossRef]
  56. P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903-1906 (1983). [CrossRef]
  57. M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, and U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003). [CrossRef]
  58. O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, and B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007). [CrossRef]
  59. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303-331 (2006). [CrossRef]
  60. J.-J. Greffet, Institut d'Optique, Paris, France (personal communication, 2008).
  61. T. H. TaminiauR. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007). [CrossRef]
  62. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008). [CrossRef]
  63. R. J. Moerland, N. F. van Hulst, H. Gersen, and L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604-1614 (2005).
  64. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000). [CrossRef]
  65. C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
  66. R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706-712 (1998). [CrossRef]
  67. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858-10866 (2008). [CrossRef]
  68. T. H. Taminiau and N. F. Van Hulst, ICFO--The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain (personal communication, 2008).
  69. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). [CrossRef]
  70. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef]
  71. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007). [CrossRef]
  72. R. Loudon, The Quantum Theory of Light, 2nd ed., Oxford Science Publications (Clarendon, 1983).
  73. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008). [CrossRef]
  74. H. Xu, E. J. Bjernfeld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  75. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef]
  76. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef]
  77. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007). [CrossRef]
  78. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984). [CrossRef]
  79. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569-586 (2001). [CrossRef]
  80. V. V. Klimov and V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61-73 (2005).
  81. A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509-514 (1983). [CrossRef]
  82. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef]
  83. G. W. Bryant, F. J. G. de Abajó, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631-636 (2008). [CrossRef]
  84. P. J. Burke, S. Li, and Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314-334 (2006). [CrossRef]
  85. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  86. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61-137 (1996). [CrossRef]
  87. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]
  88. J. R. Zurita-Sanchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355-1362 (2002). [CrossRef]
  89. J. R. Zurita-Sanchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722-2726 (2002). [CrossRef]
  90. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004). [CrossRef]
  91. J. Aizpurua and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008). [CrossRef]
  92. F. J. G. de Abajó, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983-17987 (2008). [CrossRef]
  93. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009). [CrossRef]
  94. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403-412 (2003). [CrossRef]
  95. N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195-198 (1969). [CrossRef]
  96. J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..
  97. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  98. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62-64 (2004). [CrossRef]
  99. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005). [CrossRef]
  100. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041-5043 (2003). [CrossRef]
  101. P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef]
  102. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008). [CrossRef]
  103. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  104. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008). [CrossRef]
  105. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt. .
  106. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807-812 (2007). [CrossRef]
  107. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006). [CrossRef]
  108. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006). [CrossRef]
  109. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198-4204 (2007). [CrossRef]
  110. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 011520 (2008).
  111. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26, 121-124 (2009). [CrossRef]
  112. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006). [CrossRef]
  113. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006). [CrossRef]
  114. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529-16537 (2006). [CrossRef]
  115. A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, and W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538-543 (2005). [CrossRef]
  116. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005). [CrossRef]
  117. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227-13235 (2007). [CrossRef]
  118. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295-20305 (2008). [CrossRef]
  119. J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348-353 (2007). [CrossRef]
  120. F. J. G. de Abajó and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008). [CrossRef]
  121. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  122. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005). [CrossRef]
  123. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef]
  124. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008). [CrossRef]
  125. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307-310 (2008). [CrossRef]
  126. J. Sun, S. Carney, and J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007). [CrossRef]
  127. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  128. A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807-819 (2003).
  129. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem., Int. Ed. 47, 8178-8191 (2008). [CrossRef]
  130. E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921-930 (2008). [CrossRef]
  131. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008). [CrossRef]
  132. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924-1926 (1995). [CrossRef]
  133. S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313-317 (1995). [CrossRef]
  134. B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494-501 (2008). [CrossRef]
  135. R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255-2260 (2008). [CrossRef]
  136. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006). [CrossRef]
  137. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321-328 (2000). [CrossRef]
  138. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef]
  139. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787-797 (2004). [CrossRef]
  140. M. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16, 12302-12312 (2008). [CrossRef]
  141. X. S. Xie and J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441-480 (1998). [CrossRef]
  142. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240-R249 (2003). [CrossRef]
  143. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007). [CrossRef]
  144. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101-108 (1970). [CrossRef]
  145. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974). [CrossRef]
  146. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004). [CrossRef]
  147. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005). [CrossRef]
  148. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, and L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005). [CrossRef]
  149. H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, and A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363-1367 (2008). [CrossRef]
  150. H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, and A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706-2711 (2008). [CrossRef]
  151. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004). [CrossRef]
  152. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007). [CrossRef]
  153. J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006). [CrossRef]
  154. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006). [CrossRef]
  155. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007). [CrossRef]
  156. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690-696 (2007). [CrossRef]
  157. Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008). [CrossRef]
  158. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201-203 (2008). [CrossRef]
  159. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642-646 (2008). [CrossRef]
  160. C. Höppener and L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008). [CrossRef]
  161. H. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530-5532 (2002). [CrossRef]
  162. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004). [CrossRef]
  163. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009). [CrossRef]
  164. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997). [CrossRef]
  165. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, and M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  166. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965-11971 (2000).
  167. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485-496 (2005). [CrossRef]
  168. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006). [CrossRef]
  169. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  170. A. Hartschuh, E. Sanchez, X. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003). [CrossRef]
  171. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, and L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157-176.
  172. N. Anderson, A. Hartschuh, and L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577-582 (2007). [CrossRef]
  173. A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311-317 (2006). [CrossRef]
  174. U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428-1430 (2006). [CrossRef]
  175. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008). [CrossRef]
  176. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006). [CrossRef]
  177. W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733-1738 (2007). [CrossRef]
  178. W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech. 32, 1230-1242 (1984). [CrossRef]
  179. R. L. Bailey, “A proposed new concept for a solar-energy convertor,” J. Eng. Power 94, 73-77 (1972).
  180. A. M. Marks, “Device for conversion of light to electric power,” U.S. Patent 4,445,050 (April 24, 1984).
  181. A. M. Marks, “Ordered dipolar light-electric power converter,” U.S. Patent 4,574,161 (March 4, 1986).
  182. A. M. Marks, “Femto diode and applications,” U.S. Patent 4,720,642 (January 19, 1988).
  183. R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395-401 (2002). [CrossRef]
  184. K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421-426 (2007). [CrossRef]
  185. C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden (2008).
  186. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327-2329 (1996). [CrossRef]
  187. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006). [CrossRef]
  188. M. Kirkengen, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007). [CrossRef]
  189. S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  190. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  191. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007). [CrossRef]
  192. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  193. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).
  194. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008). [CrossRef]
  195. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008). [CrossRef]
  196. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793-21800 (2008). [CrossRef]
  197. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737-740 (1991). [CrossRef]
  198. G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219-231 (1997). [CrossRef]
  199. C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339-351 (2000). [CrossRef]
  200. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008). [CrossRef]
  201. H. Kozuka, G. Zhao, and T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147-154 (1996). [CrossRef]
  202. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632-7637 (2005). [CrossRef]
  203. S. Wedge, J. A. E. Wasey, and W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182-184 (2004). [CrossRef]
  204. C. Liu, V. Kamaev, and Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005). [CrossRef]
  205. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef]
  206. P. Ball, “Let there be light,” Nature 409, 974-976 (2001). [CrossRef]
  207. W. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170-2182 (1999). [CrossRef]
  208. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006). [CrossRef]
  209. Basic Research Needs for Solid-State Lighting, Report of the Basic Energy Sciences Workshop on Solid-State Lighting (U.S. Department of Energy,2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.
  210. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994). [CrossRef]
  211. C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866-868 (2004). [CrossRef]
  212. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997). [CrossRef]
  213. J. Sun, J. Khurgin, and R. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008). [CrossRef]
  214. M. Stockman, M. Kling, U. Kleinberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539-544 (2007). [CrossRef]
  215. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000). [CrossRef]
  216. H. Rabitz, M. Hsieh, and C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998-2001 (2004). [CrossRef]
  217. S. Shi, A. Woody, and H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870-6883 (1988). [CrossRef]
  218. M. Stockman, D. Bergman, and T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004). [CrossRef]
  219. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  220. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63-S67 (2002). [CrossRef]
  221. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  222. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys. 10, 025031 (2008). [CrossRef]
  223. T. Brixner, F. G. de Abajo, J. Schneider, and W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005). [CrossRef]
  224. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715-719 (2006). [CrossRef]
  225. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301-304 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited