OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 3 — Nov. 1, 2009

Optical image compression and encryption methods

Ayman Alfalou and C. Brosseau  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 3, pp. 589-636 (2009)
http://dx.doi.org/10.1364/AOP.1.000589


View Full Text Article

Acrobat PDF (2640 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Over the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(100.0100) Image processing : Image processing
(200.3050) Optics in computing : Information processing
(200.4560) Optics in computing : Optical data processing

ToC Category:
Image Processing

History
Original Manuscript: March 30, 2009
Revised Manuscript: September 26, 2009
Manuscript Accepted: October 1, 2009
Published: October 28, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Ayman Alfalou and C. Brosseau, "Optical image compression and encryption methods," Adv. Opt. Photon. 1, 589-636 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-3-589


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139-145 (1964). [CrossRef]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  3. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812-816 (1984). [CrossRef]
  4. B. Javidi, S. F. Odeh, and Y. F. Chen, “Rotation and scale sensitivities of the binary phase-only filter.” Appl. Opt. 65, 233-238 (1988).
  5. B. V. K. Vijaya Kumar and L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997-3006 (1990). [CrossRef]
  6. J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt. 31, 165-166 (1992). [CrossRef]
  7. J. L. de Bougrenet de la Tocnaye, E. Quémener, and Y. Pétillot, “Composite versus multichannel binary phase-only filtering,” Appl. Opt. 36, 6646-6653 (1997). [CrossRef]
  8. Y. Petillot, L. Guibert, and J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC JTC,” Opt. Commun. 126, 213-219 (1996). [CrossRef]
  9. B. V. K. V. Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773-4801 (1992). [CrossRef]
  10. A. Alfalou, G. Keryer, and J. L. de Bougrenet de la Tocnaye, “Optical implementation of segmented composite filtering,” Appl. Opt. 38, 6129-6136 (1999). [CrossRef]
  11. A. Alfalou, M. Elbouz, and H. Hamam, “Segmented phase-only filter binarized with a new error diffusion approach,” J. Opt. A Pure Appl. Opt. 7, 183-191 (2005). [CrossRef]
  12. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529-541 (1981). [CrossRef]
  13. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978). [CrossRef]
  14. Feature issue on Task Specific Sensing, Appl. Opt. 45, 2857-3070 (2006).
  15. M. Kessels, M. El Bouz-Alfalou, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct-write of binary and multi-level microstructures,” J. Micro/Nanolith. MEMS MOEMS 6 (2007). [CrossRef]
  16. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46-53 (2005).
  17. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960-967 (2006). [CrossRef]
  18. M. Madec, J. B. Fasquel, W. Uhring, P. Joffre, and Y. Herve, “Optical implementation of the filtered backprojection algorithm,” Opt. Eng. 46, 1-16 (2007). [CrossRef]
  19. J. Porter, H. Queener, J. E. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).
  20. B. Culshaw, A. G. Mignani, H. Bartelt, and L. R. Jaroszewicz, “Implementation of high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006). [CrossRef]
  21. M. Madec, W. Uhring, J. B Fasquel, P. Joffre, and Y. Hervé, “Compatibility of temporal multiplexed spatial light modulator with optical image processing,” Opt. Commun. 275, 27-37 (2007). [CrossRef]
  22. R. M. Turner, K. M. Johnson, and S. Serati, High Speed Compact Optical Correlator Design and Implementation (Cambridge Univ. Press, 1995).
  23. S. G. Batsell, J. F. Walkup, and T. F. Krile, Design Issues in Optical Processing (Cambridge Univ. Press, 1995).
  24. S. Coomber, C. Cameron, J. Hughes, D. Sheerin, C. Slinger, M. A. G. Smith, and M. Stanley, “Optically addressed spatial light modulators for replaying computer-generated holograms,” Proc. SPIE 4457, 9-19 (2001). [CrossRef]
  25. B. Landreth and G. Modde, “Gray scale response from optically addressed spatial light modulators incorporating surface-stabilized ferroelectric liquid crystals,” Appl. Opt. 31, 3937-3944 (1992). [CrossRef]
  26. H. Xu, A. B. Davey, T. D. Wilkinson, W. A. Crossland, J. Chapman, W. L. Duffy, and S. M. Kelly, “Comparison between pixelated-metal-mirrored and non-mirrored ferroelectric liquid crystal OASLM devices,” in Proceedings of the 19th International Liquid Crystal Conference (2004), pp. 527-536.
  27. H. Guitter, La Compression des Images Numériques (Hermes, 1995).
  28. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and J. Bahram, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187-6192 (2002). [CrossRef]
  29. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [CrossRef]
  30. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Izdatel'stvo Nauka, 1977), in Russian.
  31. E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351-356 (2007). [CrossRef]
  32. M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,” SRC Research Report (Digital Systems Research Center, May 10, 1994).
  33. E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45, 2437-2443 (2006). [CrossRef]
  34. T. J. Naughton, Y. Frauel, O. Matoba, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional video,” in Three-Dimensional Television, Video, and Display Technologies, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002), pp. 273-295.
  35. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006). [CrossRef]
  36. E. Darakis and J. J. Soraghan, “Compression of phase-shifting digital holography interference patterns,” Proc. SPIE 6187, 61870Y (2006). [CrossRef]
  37. A. E. Shortt, T. J. Naughton, and B. Javidi, “Nonuniform quantization compression techniques for digital holograms of three-dimensional objects,” Proc. SPIE 5557, 30-41 (2004). [CrossRef]
  38. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  39. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4131 (2002). [CrossRef]
  40. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612 (2000). [CrossRef]
  41. Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001). [CrossRef]
  42. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358-2367 (1989). [CrossRef]
  43. L. Guibert, G. Keryer, A. Servel, M. Attia, H. Mackenzie, P. Pellat-Finet, and J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 101-109 (1995). [CrossRef]
  44. D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE 40, 1098-1101 (1952).
  45. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory IT-23, 337-343 (1977).
  46. T. A. Welch, “A technique for high performance data compression,” Computer 17, 8-19 (1984).
  47. S. L. Wijaya, M. Savvides, and B. V. K. Vijaya Kumar, “Illumination-tolerant face verification of low-bit-rate JPEG2000 wavelet images with advanced correlation filters for handheld devices,” Appl. Opt. 44, 655-665 (2005). [CrossRef]
  48. L. Ding, Y. Yan, Q. Xue, and G. Jin, “Wavelet packet compression for volume holographic image recognition,” Opt. Commun. 216, 105-113 (2003). [CrossRef]
  49. T. J. Naughton, J. John B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003). [CrossRef]
  50. B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889-11902 (2007). [CrossRef]
  51. S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632-1642 (2004). [CrossRef]
  52. V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards, 2nd ed. (Kluwer Academic, 1997).
  53. W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression Standard (Van Nostrand Reinhold, 1993).
  54. A. Alkholidi, A. Alfalou, and H. Hamam, “A new approach for optical colored image compression using the JPEG standards,” Signal Process. 87, 569-583 (2007). [CrossRef]
  55. A. Alfalou and A. Alkholidi, “Implementation of an all-optical image compression architecture based on Fourier transform which will be the core principle in the realisation of DCT,” Proc. SPIE 5823, 183-190 (2005). [CrossRef]
  56. A. Alkholidi, A. Cottour, A. Alfalou, H. Hamam, and G. Keryer, “Real-time optical 2D wavelet transform based on the JPEG2000 standards,” Eur. Phys. J. Appl. Phys. 44, 261-272 (2008). [CrossRef]
  57. R. K. Young, Wavelet Theory and Its Applications (Kluwer Academic, 1993).
  58. D. W. Robinson, “Automatic fringe analysis with a computer image processing system,” Appl. Opt. 22, 2169-2176 (1983). [CrossRef]
  59. K. Creath, “Phase shifting speckle interferometry,” Appl. Opt. 24, 3053-3058 (1985). [CrossRef]
  60. M. Takeda, H. Ina, and S. Kobayashi, “Fourier transform method of fringe pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  61. T. W. Ng and K. T. Ang, “Fourier-transform method of data compression and temporal fringe pattern analysis,” Appl. Opt. 44, 7043-7049 (2005). [CrossRef]
  62. J. M. Huntley and H. Saldner, “Temporal phase unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047-3052 (1993). [CrossRef]
  63. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, and C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068-1070 (2000). [CrossRef]
  64. T. E. Carlsson and A. Wei, “Phase evaluation of speckle patterns during continuous deformation by use of phase-shifting speckle interferometry,” Appl. Opt. 39, 2628-2637 (2000). [CrossRef]
  65. W. E. Smith and H. H. Barrett, “Radon transform and bandwidth compression,” Opt. Lett. 8, 395-397 (1983). [CrossRef]
  66. A. Boumezzough, A. Alfalou, and C. Collet, “Optical image compression based on filtering of the redundant information in Fourier domain with a segmented amplitude mask (SAM),” in Proceedings of Complex Systems, Intelligence and Modern Technological Applications, M.Rouff and M.Cotsaftis, eds (Society of Environmental Engineers, 2004), pp. 566-570.
  67. S. Soualmi, A. Alfalou, and H. Hamam, “Optical image compression based on segmentation of the Fourier plane: new approaches and critical analysis,” J. Opt. A Pure Appl. Opt. 9, 73-80 (2007). [CrossRef]
  68. A. Cottour, A. Alfalou, and H. Hamam, “Optical video image compression: a multiplexing method based on the spectral fusion of information,” in 3rd International Conference on Information and Communication Technologies: from Theory to Applications, 2008. ICTTA 2008 (IEEE, 2008), pp. 1-6.
  69. D. Coppersmith, “The Data Encryption Standard (DES) and its strength against attacks,” IBM J. Res. Dev. 38, 243-250 (1994).
  70. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 20, 120-126 (1978). [CrossRef]
  71. P. Refrégiér and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef]
  72. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629-2638 (1998). [CrossRef]
  73. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption. by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000). [CrossRef]
  74. S. Kishk and B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt. 41, 5462-5470 (2002). [CrossRef]
  75. J. F. Barrera, R. Henao, M. Tebaldi, N. Bolognini, and R. Torroba, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109-112 (2006). [CrossRef]
  76. L. G. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35, 2459-2463 (1996). [CrossRef]
  77. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915-1927 (1999). [CrossRef]
  78. G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193, 51-67 (2001). [CrossRef]
  79. B. Javidi and N. Takanori, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000). [CrossRef]
  80. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  81. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584-1586 (2004). [CrossRef]
  82. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999). [CrossRef]
  83. R. Arizaga, R. Henao, and R. Torroba, “Fully digital encryption technique,” Opt. Commun. 221, 43-47 (2003).
  84. Y. Guo, Q. Huang, J. Du, and Y. Zhang, “Decomposition storage of information based on computer-generated hologram interference and its application in optical image encryption,” Appl. Opt. 40, 2860-2863 (2001). [CrossRef]
  85. J. F. Barrera, R. Henao, M. Tebaldi, N. Bolognini, and R. Torroba, “Multiple image encryption using an aperture-modulated optical system,” Opt. Commun. 261, 29-33 (2006). [CrossRef]
  86. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288-7293 (1999). [CrossRef]
  87. L. Cai, M. He, Q. Liu, and X. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43, 3078-3084 (2004). [CrossRef]
  88. M. He, L. Cai, Q. Liu, and X. Yang, “Phase-only encryption and watermarking based on phase-shifting interferometry,” Appl. Opt. 44, 2600-2606 (2005). [CrossRef]
  89. D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617-4624 (2006). [CrossRef]
  90. D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584-1589 (2001). [CrossRef]
  91. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031-2035 (2000). [CrossRef]
  92. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt. 42, 1508-1514 (2003). [CrossRef]
  93. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Digital color encryption using a multi-wavelength approach and a joint transform correlator,” J. Opt. A Pure Appl. Opt. 10, 104031-104035 (2008). [CrossRef]
  94. Z. Xin, Y. S.Wei, and X. Jian, “Affine cryptosystem of double-random-phase encryption based on the fractional Fourier transform,” Appl. Opt. 45, 8434-8439 (2006). [CrossRef]
  95. Z. Liu and S. Liu, “Double image encryption based on iterative fractional Fourier transform,” Opt. Commun. 275, 324-329 (2007). [CrossRef]
  96. S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26, 1242-1244 (2001). [CrossRef]
  97. W. Xiaogang, Z. Daomu, and C. Linfei, “Image encryption based on extended fractional Fourier transform and digital holography technique,” Opt. Commun. 260, 449-453 (2006). [CrossRef]
  98. B. M. Hennelly and J. T. Sheridan, “Image encryption techniques based on fractional Fourier transform,” Proc. SPIE 5202, 76-87 (2003). [CrossRef]
  99. M. Joshi, Chandrashakher, and K. Singh, “Color image encryption and decryption for twin images in fractional Fourier domain,” Opt. Commun. 281, 5713-5720 (2008). [CrossRef]
  100. M. Z. He, L. Z. Cai, Q. Liu, X. C. Wang, and X. F. Meng, “Multiple image encryption and watermarking by random phase matching,” Opt. Commun. 247, 29-37 (2005). [CrossRef]
  101. X. F. Meng, L. Z. Cai, M. Z. He, G. Y. Dong, and X. X. Shen, “Cross-talk-free double-image encryption and watermarking with amplitude-phase separate modulations,” J. Opt. A Pure Appl. Opt. 7, 624-631 (2005). [CrossRef]
  102. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002). [CrossRef]
  103. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253-10265 (2007). [CrossRef]
  104. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644-1646 (2005). [CrossRef]
  105. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044-1046 (2006). [CrossRef]
  106. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiple-encoding retrieval for optical security,” Opt. Commun. 276, 231-236 (2007). [CrossRef]
  107. C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248-1249 (1966). [CrossRef]
  108. L. Chen and D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14, 8552-8560 (2006). [CrossRef]
  109. M. Joshia, Chandrashakherb, and K. Singh, “Color image encryption and decryption using fractional Fourier transform,” Opt. Commun. 279, 34-42 (2007).
  110. G. Keryer, J. L. de Bougrenet de la Tocnaye, and A. Alfalou, “Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators,” Appl. Opt. 36, 3043-3055 (1997). [CrossRef]
  111. M. Nazrul Islam and M. S. Alam, “Optical security system employing shifted phase-encoded joint transform correlation,” Opt. Commun. 281, 248-254 (2008). [CrossRef]
  112. M. R. Haider, M. Nazrul Islam, M. S. Alam, and J. F. Khan, “Shifted phase-encoded fringe-adjusted joint transform correlation for multiple target detection,” Opt. Commun. 248, 69-88 (2005). [CrossRef]
  113. A. R. Alsamman and M. S. Alam, “Face recognition through pose estimation and fringe-adjusted joint transform correlation,” Opt. Eng. 42, 560-567 (2003). [CrossRef]
  114. B. Zhu, S. Liu, and Q. Ran, “Optical image encryption based on multifractional Fourier transforms,” Opt. Lett. 25, 1159-1161 (2000). [CrossRef]
  115. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28, 269-271 (2003). [CrossRef]
  116. B. Hennelly and J. T. Sheridan, “Image encryption and the fractional Fourier transform,” Optik (Stuttgart) 114, 251-265 (2003). [CrossRef]
  117. N. K. Nishchal, J. Joseph, and K. Singh, “Securing information using fractional Fourier transform in digital holography,” Opt. Commun. 235, 253-259 (2004). [CrossRef]
  118. Z. Liu, S. Liu, “Double image encryption based on iterative fractional Fourier transform,” Opt. Commun. 275, 324-329 (2007). [CrossRef]
  119. A. Alfalou and A. Mansour, “All-optical video-image encryption with enforced security level using independent component analysis,” J. Opt. A Pure Appl. Opt. 9, 787-796 (2007). [CrossRef]
  120. A. Hyvarinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks 13, 411-430 (2000). [CrossRef]
  121. A. Mansour and M. Kawamoto, “ICA papers classified according to their applications and performances,” IEICE Trans. Fundamentals E86-A, 620-633 (2003).
  122. P. Comon, “Independent component analysis, a new concept?,” Signal Process. 36, 287-314 (1994). [CrossRef]
  123. R. El Sawda, A. Alfalou, G. Keryer, and A. Assoum, “Image encryption and decryption by means of an optical phase mask,” in 2nd Information and Communication Technologies, 2006. ICTTA '06 (IEEE, 2006), Vol. 1, pp. 1474-1477.
  124. A. Alfalou and A. Mansour, “New Image Encryption Method Based on ICA,” in Proceedings of the 10th IAPR Conference on Machine Vision Applications, J.Tajima, ed. (International Association for Pattern Recognition, 2007), pp. 16-18.
  125. M. Madec, E. Hueber, W. Uhring, J. B. Fasquel, and Y. Hervé, “Procedures for SLM image quality improvement,” in Proceedings of the European Optical Society Annual Meeting, Proceedings on CD (European Optical Society, 2008).
  126. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775-2783 (1994). [CrossRef]
  127. A. Mansour, A. Kardec Barros, and N. Ohnishi, “Blind separation of sources: methods, assumptions and applications,” IEICE Trans. Fundamentals E83-A, 1498-512 (2000).
  128. C. Jutten and J. Herault, “Blind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architecture,” Signal Process. 24, 1-10 (1991). [CrossRef]
  129. A. Mansour and A. Alfalou, “Performance indices of BSS for real-world applications,” in Proceedings of the 14th European Signal Processing Conference (EUSIPCO 2006), Proceedings on CD (EURASIP, 2006).
  130. A. Alfalou, A. Loussert, A. Alkholidi, and R. El Sawda, “System for image compression and encryption by spectrum fusion in order to optimize image transmission,” in Future Generation Communication and Networking (FGCN 2007) (IEEE Computer Society, 2007), vol. 1, pp. 590-593.
  131. A. Loussert, A. Alfalou, R. El Sawda, and A. Alkholidi, “Enhanced system for image's compression and encryption by addition of biometric characteristics,” Int. J. Software Eng. Its Appl. 2, 111-118 (2008).
  132. J. H. Reif and A. Yoshida, “Optical techniques for image compression,” in Data Compression Conference, 1992. DCC '92 (IEEE, 1992), pp. 32-40.
  133. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  134. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006). [CrossRef]
  135. G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44, 1216-1225 (2005). [CrossRef]
  136. J. D. He and E. L. Dereniak, “Error-free image compression algorithm using classifying-sequencing techniques,” Appl. Opt. 31, 2554-2559 (1992). [CrossRef]
  137. R. Shahnaz, J. F. Walkup, and T. F. Krile, “Image compression in signal-dependent noise,” Appl. Opt. 38, 5560-5567 (1999). [CrossRef]
  138. F. Domingo and C. Saloma, “Image compression by vector quantization with noniterative derivation of a codebook: applications to video and confocal images,” Appl. Opt. 38, 3735-3744 (1999). [CrossRef]
  139. A. Bilgin, G. Zweig, and M. W. Marcellin, “Three-dimensional image compression with integer wavelet transforms,” Appl. Opt. 39, 1799-1814 (2000). [CrossRef]
  140. J. C. Dagher, M. W. Marcellin, and M. A. Neifeld, “Efficient storage and transmission of ladar imagery,” Appl. Opt. 42, 7023-7035 (2003). [CrossRef]
  141. E. Darakis, T. J. Naughton, and J. J. Soraghan, “Compression defects in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579-4586 (2007). [CrossRef]
  142. Y. Li, K. Kreske, and J. Rosen, “Security and encryption optical systems based on a correlator with significant output images,” Appl. Opt. 39, 5295-5301 (2000). [CrossRef]
  143. A. Zlotnik, Z. Zalevsky, and E. Marom, “Optical encryption by using a synthesized mutual intensity function,” Appl. Opt. 43, 3456-3465 (2004). [CrossRef]
  144. D. Abookasis, O. Montal, O. Abramson, and J. Rosen, “Watermarks encrypted in a concealogram and deciphered by a modified joint-transform correlator,” Appl. Opt. 44, 3019-3023 (2005). [CrossRef]
  145. H. T. Chang and C. L. Tsan, “Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,” Appl. Opt. 44, 6211-6219 (2005). [CrossRef]
  146. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181-3186 (2006). [CrossRef]
  147. R. Tao, Y. Xin, and Y. Yang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15, 16067-16079 (2007). [CrossRef]
  148. D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Key-space analysis of double random phase encryption technique,” Appl. Opt. 46, 6641-6647 (2007). [CrossRef]
  149. S. Yuan, X. Zhou, D.-H. Li, and D.-F. Zhou, “Simultaneous transmission for an encrypted image and a double random-phase encryption key,” Appl. Opt. 46, 3747-3753 (2007). [CrossRef]
  150. X. Wang and Y. Chen, “Securing information using digital optics,” J. Opt. A Pure Appl. Opt. 9, 152-155 (2007). [CrossRef]
  151. M. Ragulskis, A. Aleksa, and L. Saunoriene, “Improved algorithm for image encryption based on stochastic geometric moiré and its application,” Opt. Commun. 273, 370-378 (2007). [CrossRef]
  152. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109-112 (2006). [CrossRef]
  153. U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Polarization encoding and multiplexing of two-dimensional signals: application to image encryption,” Appl. Opt. 45, 5693-5700 (2006). [CrossRef]
  154. E. H. Horache, “Optical multiplex correlation based in spatial coherent modulation for wide spectral sources: applications for pattern recognition,” Ph.D. thesis (University of Marne-La-Vallée, 2001).
  155. B.-E. Benkelfat, E. H. Horache, and Q. Zou, “Multiplex signal processing in optical pattern recognition,” in Proceeding of Optics and Optoelectronics, Theory, Devices and Applications, O.P.Nijhanram, A.K.Gupta, A.K.Musla, KeharSingh, eds. (Narosa, 1999), pp. 84-87.
  156. T. J. Naughton, J. B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited