OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 3 — Sep. 30, 2011

Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging

Sophie Brasselet  »View Author Affiliations

Advances in Optics and Photonics, Vol. 3, Issue 3, pp. 205-271 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2813 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this tutorial I analyze the polarization-dependent properties of different optical contrasts widely used today in imaging, applied to biology and biomedical diagnostics. I derive the essential properties of the polarization dependence of optical processes such as two-photon fluorescence, nonlinear coherent effects in the nonresonant as well as vibrational-resonant regimes, and analyze how they can be exploited to provide information on the molecular orientational organization in a biological sample. Two examples will be detailed: the first one the measurement of lipid order in artificial and cell membranes by using fluorescent labeling, and the second one structural imaging of collagen in tissues by using second-harmonic generation.

© 2011 OSA

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Imaging Systems

Original Manuscript: March 14, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 23, 2011
Published: August 30, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

Sophie Brasselet, "Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging," Adv. Opt. Photon. 3, 205-271 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 1999.
  2. B. Huang, M. Bates, and X. Zhuang, "Super-resolution fluorescence microscopy," Annu. Rev. Biochem. 78, 993‒1016 (2009). [CrossRef] [PubMed]
  3. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimesional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493‒508 (2002). [CrossRef]
  4. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932‒940 (2005). [CrossRef] [PubMed]
  5. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73‒76 (1990). [CrossRef] [PubMed]
  6. R. Hellwarth and P. Cristensen, "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe," Opt. Commun. 12, 318‒322 (1974). [CrossRef]
  7. C. J. R. Sheppard, R. Kompfner, J. Gannaway, and D. Walsh, "The scanning harmonic optical microscope," IEEE J. Quantum Electron. 13, 912 (1977). [CrossRef]
  8. I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, "Infrared nonlinear optical measurements of membrane potential in photoreceptor cells," Biophys. J. 71, 1616‒1620 (1996). [CrossRef] [PubMed]
  9. L. Moreaux, T. Pons, V. Dambrin, M. Blanchard-Desce, and J. Mertz, "Electro-optic response of second harmonic generation membrane potential sensors," Opt. Lett. 28, 625‒627 (2003). [CrossRef] [PubMed]
  10. I. Freund, M. Deutsch, and A. Sprecher, "Connective tissue polarity. Optical photo microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693‒712 (1986). [CrossRef] [PubMed]
  11. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Optics Lett. 22, 1323‒1325 (1997). [CrossRef]
  12. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by third-harmonic generation microscopy," J. Struct. Biol. 147, 3‒11 (2004). [CrossRef] [PubMed]
  13. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47‒53 (2006). [CrossRef] [PubMed]
  14. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142‒4145 (1999). [CrossRef]
  15. J.-X. Cheng, Y. K. Ji, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502‒509 (2002). [CrossRef] [PubMed]
  16. D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarcea, B. Dietzek, M. Schmitt, and J. Popp, "Different contrast information obtained from CARS and nonresonant FWM images," J. Raman Spectrosc. 40, 941‒947 (2009). [CrossRef]
  17. S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, "Optical parametric oscillators based light source for Coherent Raman Scattering microscopy: practical overview," J. Biomed. Opt. 16, 021106 (2011). [CrossRef] [PubMed]
  18. D. A. Cheresh, J. Leng, and R. L. Klemke, "Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells," J. Cell Biol. 146, 1107‒1116 (1999). [CrossRef] [PubMed]
  19. A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, "Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM," J. Cell Biol. 188, 415‒428 (2010). [CrossRef] [PubMed]
  20. T. Pentcheva and M. Edidin, "Clustering of peptide-loaded MHC class I molecules for endoplasmic reticulum export imaged by fluorescence resonance energy transfer," J. Immunol. 166, 6625‒6632 (2001). [PubMed]
  21. D. R. Fooksman, G. K. Grönvall, Q. Tang, and M. Edidin, "Clustering class I MHC modulates sensitivity of T cell recognition," J. Immunol. 176, 6673‒6680 (2006). [PubMed]
  22. R. K. P. Benninger, B. Vanherberghen, S. Young, S. B. Taner, F. J. Culley, T. Schnyder, M. A. A. Neil, D. Wüstner, P. M. W. French, D. M. Davis, and B. Önfelt, "Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses," Biophys. J. 96, L13‒L15 (2009). [CrossRef] [PubMed]
  23. J. Borejdo and S. Burlacu, "Measuring orientation of actin filaments within a cell: orientation of actin in intestinal microvilli," Biophys. J. 65, 300‒309 (1993). [CrossRef] [PubMed]
  24. A. S. Brack, B. D. Brandmeier, R. E. Ferguson, S. Criddle, R. E. Dale, and M. Irving, "Bifunctional rhodamine probes of myosin regulatory light chain orientation in relaxed skeletal muscle fibers," Biophys. J. 86, 2329‒2341 (2004). [CrossRef] [PubMed]
  25. A. M. Vrabioiu and T. J. Mitchison, "Structural insights into yeast septin organization from polarized fluorescence microscopy," Nature 443, 466‒468 (2006). [CrossRef] [PubMed]
  26. R. W. Boyd, Nonlinear Optics, 3rd ed., Academic, 2008.
  27. R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, "Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies," J. Phys. Chem. B 112, (18), 5834‒5848 (2008). [CrossRef] [PubMed]
  28. F. Munhoz, H. Rigneault, and S. Brasselet, "High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy," Phys. Rev. Lett. 105, 123903 (2010). [CrossRef] [PubMed]
  29. D. Axelrod, "Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557‒573 (1979). [CrossRef] [PubMed]
  30. K. Florine-Casteel, "Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy," Biophys. J. 57, 1199‒1215 (1990). [CrossRef] [PubMed]
  31. R. K. Benninger, B. Onfelt, M. A. Neil, D. M. Davis, and P. M. French, "Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes," Biophys. J. 88, 609‒622 (2005). [CrossRef] [PubMed]
  32. C. K. Haluska, A. P. Schröder, P. Didier, D. Heissler, G. Duportail, Y. Mély, and C. M. Marques, "Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles," Biophys. J. 95, 5737‒5747 (2008). [CrossRef] [PubMed]
  33. A. Gasecka, L.-Q. Dieu, D. Brühwiler, and S. Brasselet, "Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscopy," J. Phys. Chem. B 114, 4192‒4198 (2010). [CrossRef] [PubMed]
  34. S. Brasselet and J. Zyss, "Nonlinear polarimetry of molecular crystals down to the nanoscale," C. R. Phys. 8, 165‒179 (2007). [CrossRef]
  35. M. Gurp, "The use of rotation matrices in the mathematical description of molecular orientations in polymers," Colloid Polym. Sci. 273, 607‒625 (1995). [CrossRef]
  36. P. D. Maker, "Spectral broadening of elastic second-harmonic light scattering in liquids," Phys. Rev. A 1, 923‒951 (1970). [CrossRef]
  37. F. Perrin, "La fluorescence des solutions. Polarisation. Vie moyenne des molécules dans l’état excité," J. Phys. 7, 390‒401 (1926).
  38. G. Weber, "Rotational Brownian motion and polarization of the fluorescence of solutions," Adv. Protein Chem. 8, 415‒459 (1953). [PubMed]
  39. R. E. Dale, S. C. Hopkins, U. A. van der Heide, T. Marszalek, M. Irving, and Y. E. Goldman, "Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers," Biophys. J. 76, 1606‒1618 (1999). [CrossRef] [PubMed]
  40. A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, "Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry," Biophys. J. 97, 2854‒2862 (2009). [CrossRef] [PubMed]
  41. T. Ha, Th. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss, "Single molecule dynamics studied by polarization modulation," Phys. Rev. Lett. 77, 3979‒3982 (1996). [CrossRef] [PubMed]
  42. J. A. Dix and A. S. Verkman, "Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity," Biophys. J. 57, 231‒240 (1990). [CrossRef] [PubMed]
  43. T. H. Foster, B. D. Pearson, S. Mitra, and C. E. Bigelow, "Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope," Photochem. Photobiol. 81, 1544‒1547 (2005). [CrossRef] [PubMed]
  44. B. Corry, D. Jayatilaka, B. Martinac, and P. Rigby, "Determination of the orientational distribution and orientation factor for transfer between membrane-bound fluorophores using a confocal microscope," Biophys. J. 91, 1032‒1045 (2006). [CrossRef] [PubMed]
  45. S. M. Blackman, C. E. Cobb, A. H. Beth, and D. W. Piston, "The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy," Biophys. J. 71, 194‒208 (1996). [CrossRef] [PubMed]
  46. J. V. Rocheleau, M. Edidin, and D. W. Piston, "Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment," Biophys. J. 84, 4078‒4086 (2003). [CrossRef] [PubMed]
  47. A. L. Mattheyses, M. Kampmann, C. E. Atkinson, and S. M. Simon, "Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex," Biophys. J. 99, 1706‒1717 (2010). [CrossRef] [PubMed]
  48. T. E. Schaus, E. W. Taylor, and G. G. Borisy, "Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model," Proc. Nat. Acad. Sci. U.S.A. 104, 7086‒7091 (2007). [CrossRef]
  49. E. J. Gualtieri, L. M. Haupert, and G. J. Simpson, "Interpreting nonlinear optics of biopolymers: finding a hook," Chem. Phys. Lett. 465, (4–6), 167‒174 (2008). [CrossRef]
  50. J. M. Bueno and M. C. W. Campbell, "Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry," Opt. Lett. 27, 830‒832 (2002). [CrossRef] [PubMed]
  51. H. Mueller, "The foundation of optics," J. Opt. Soc. Am. 38, 661 (1948).
  52. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101‒104 (2002). [CrossRef] [PubMed]
  53. D. Lara and C. Dainty, "Axially resolved complete Mueller matrix confocal microscopy," Appl. Opt. 45, 1917‒1930 (2006). [CrossRef] [PubMed]
  54. C. E. Bigelow and T. H. Foster, "Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarisation," J. Opt. Soc. Am. A 23, 2932‒2943 (2006). [CrossRef]
  55. P. Lemaillet, F. Pellen, S. Rivet, B. Le Jeune, and J. Cariou, "Optimization of a dual-rotating-retarder polarimeter designed for hyper-Rayleigh scattering," J. Opt. Soc. Am. B 24, 609‒614 (2007). [CrossRef]
  56. V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, "Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy," J. Phys. Chem. B 107, 12403‒12410 (2003). [CrossRef]
  57. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, "In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy," Phys. Rev. Lett. 92, 207401 (2004). [CrossRef] [PubMed]
  58. C. Anceau, S. Brasselet, and J. Zyss, "Local orientational distribution of molecular monolayers probed by nonlinear microscopy," Chem. Phys. Lett. 411, (1–3), 98‒102 (2005). [CrossRef]
  59. D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, "Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging," Opt. Express 18, 14859‒14870 (2010). [CrossRef] [PubMed]
  60. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, "Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea," Opt. Express 18, 5028‒5040 (2010). [CrossRef] [PubMed]
  61. F. Munhoz, S. Brustlein, D. Gachet, F. Billard, S. Brasselet, and H. Rigneault, "Raman depolarization ratio of liquids probed by linear polarization coherent anti-Stokes Raman spectroscopy," J. Raman Spectrosc. 40, 775‒780 (2009). [CrossRef]
  62. I. Amat-Roldan, S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, "Fast image analysis in polarization SHG microscopy," Opt. Express 18, 17209‒17219 (2010). [CrossRef] [PubMed]
  63. P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, "Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging," Phys. Rev. A 81, 013809 (2010). [CrossRef]
  64. R. C. Jones, "A new calculus for the treatment of optical systems," J. Opt. Soc. Am. 31, 488‒493 (1941). [CrossRef]
  65. J. T. Madden, V. J. Hall, and G. J. Simpson, "Mining the polarization-dependence of nonlinear optical measurements," Analyst (London) 136, 652‒662 (2011). [CrossRef]
  66. R. M. Plocinik, R. M. Everly, A. J. Moad, and G. J. Simpson, "Modular ellipsometric approach for mining structural information from nonlinear optical polarization analysis," Phys. Rev. B 72, 125409 (2005). [CrossRef]
  67. N. J. Begue, A. J. Moad, and G. J. Simpson, "Nonlinear optical Stokes ellipsometry 1: Theoretical framework," J. Phys. Chem. C 113, (23), 10158‒10165 (2009). [CrossRef]
  68. N. J. Begue, R. M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, "Nonlinear optical Stokes ellipsometry 2: Experimental demonstration," J. Phys. Chem. C 113, (23), 10166‒10175 (2009). [CrossRef]
  69. N. Sandeau, L. Le Xuan, D. Chauvat, C. Zhou, J. F. Roch, and S. Brasselet, "Defocused imaging of second harmonic generation from a single nanocrystal," Opt. Express 15, 16051‒16060 (2007). [CrossRef] [PubMed]
  70. G. M. Lerman and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express 16, 4567‒4581 (2008). [CrossRef] [PubMed]
  71. M. R. Foreman, C. M. Romero, and P. Török, "Determination of the three-dimensional orientation of single molecules," Opt. Lett. 33, 1020‒1022 (2008). [CrossRef] [PubMed]
  72. M. R. Beversluis, L. Novotny, and S. J. Stranick, "Programmable vector point-spread function engineering," Opt. Express 14, 2650‒2656 (2006). [CrossRef] [PubMed]
  73. D. Oron, E. Tal, and Y. Silberberg, "Depth-resolved multiphoton polarization microscopy by third-harmonic generation," Opt. Lett. 28, 2315‒2317 (2003). [CrossRef] [PubMed]
  74. O. Masihzadeh, P. Schlup, and R. A. Bartels, "Enhanced spatial resolution in third-harmonic microscopy through polarization switching," Opt. Lett. 34, 1240‒1242 (2009). [CrossRef] [PubMed]
  75. K. Yoshiki, M. Hashimoto, and T. Araki, "Controlled polarization pattern to determine three-dimensional molecular orientation," Jpn. J. Appl. Phys. 44, L1066‒L1068 (2005). [CrossRef]
  76. K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto, and T. Araki, "Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation," Opt. Lett. 32, 1680‒1682 (2007). [CrossRef] [PubMed]
  77. E. Y. S. Yew and C. J. R. Sheppard, "Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453‒457 (2007). [CrossRef]
  78. O. Masihzadeh, P. Schlup, and R. A. Bartels, "Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy," Opt. Lett. 34, 1090‒1092 (2009). [CrossRef] [PubMed]
  79. L. Polachek, D. Oron, and Y. Silberberg, "Full control of the spectral polarization of ultrashort pulses," Opt. Lett. 31, 631‒633 (2006). [CrossRef] [PubMed]
  80. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A. 253, 358‒379 (1959). [CrossRef]
  81. A. A. Asatryan, C. J. R. Sheppard, and C. M. de Sterke, "Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams," J. Opt. Soc. Am. B 21, 2206‒2212 (2004). [CrossRef]
  82. E. Y. S. Yew and C. R. J. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167‒1174 (2006). [CrossRef] [PubMed]
  83. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Elsevier North-Holland, 1987.
  84. P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, "Polarization distortion effects in polarimetric two-photon microscopy," Opt. Express 16, 20891‒20901 (2008). [CrossRef] [PubMed]
  85. J. Schlessinger, D. E. Koppel, D. Axelrod, K. Jacobson, W. W. Webb, and E. L. Elson, "Lateral transport on cell membranes: mobility of concanavalin a receptors on myoblasts," Proc. Natl. Acad. Sci. U.S.A. 73, 2409‒2413 (1976). [CrossRef] [PubMed]
  86. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251‒2265 (1999). [CrossRef] [PubMed]
  87. G. J. Schütz, G. Kada, V. Ph. Pastushenko, and H. Schindler, "Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy," EMBO J. 162, 892‒901 (2000).
  88. D. Marguet, E. T. Spiliotis, T. Pentcheva, M. Lebowitz, J. Schneck, and M. Edidin, "Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum," Immunity 11, 231‒240 (1999). [CrossRef] [PubMed]
  89. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, "Lipid rafts reconstituted in model membranes," Biophys. J. 80, 1417‒1428 (2001). [CrossRef] [PubMed]
  90. A. V. Samsonov, I. Mihalyov, and F. S. Cohen, "Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes," Biophys. J. 81, 1486‒1500 (2001). [CrossRef] [PubMed]
  91. D. Scherfeld, N. Kahya, and P. Schwille, "Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol," Biophys. J. 85, 3758‒3768 (2003). [CrossRef] [PubMed]
  92. T. Baumgart, S. T. Hess, and W. W. Webb, "Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension," Nature 425, 821‒824 (2003). [CrossRef] [PubMed]
  93. K. Simons and E. Ikonen, "Functional rafts in cell membranes," Nature 387, 569‒572 (1997). [CrossRef] [PubMed]
  94. E. Ikonen, "Roles of lipid rafts in membrane transport," Curr. Opin. Cell Biol. 13, 470‒477 (2001). [CrossRef] [PubMed]
  95. S. L. Veatch and S. L. Keller, "Organization in lipid membranes containing cholesterol," Phys. Rev. Lett. 89, 268101 (2002). [CrossRef] [PubMed]
  96. N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, "Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy," J. Biol. Chem. 278, 28109‒28115 (2003). [CrossRef] [PubMed]
  97. H. M. McConnell and M. Vrljic, "Liquid–liquid immiscibility in membranes," J. Biol. Chem. 32, 469‒492 (2003).
  98. M. Edidin, "The state of lipid rafts: from model membranes to cells," Annu. Rev. Biophys. Biomol. Struct. 32, 257‒283 (2003). [CrossRef] [PubMed]
  99. S. Munro, "Lipid rafts: elusive or illusive?," Cell. 115, 377‒388 (2003). [CrossRef] [PubMed]
  100. L. A. Bagatolli and E. Gratton, "Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles," Biophys. J. 77, 2090‒2101 (1999). [CrossRef] [PubMed]
  101. H. M. Kim, H.-J. Choo, S.-Y. Jung, Y.-G. Ko, W.-H. Park, S.-J. Jeon, C. H. Kim, T. Joo, and B. R. Cho, "A two-photon fluorescent probe for lipid raft imaging: C-laurdan," ChemBioChem 8, 553‒559 (2007). [CrossRef] [PubMed]
  102. T. Baumgart, G. Hunt, E. R. Farkas, W. W. Webb, and G. W. Feigenson, "Fluorescence probe partitioning between Lo/Ld phases in lipid membranes," Biochim. Biophys. Acta 1768, 2182‒2194 (2007). [CrossRef] [PubMed]
  103. A. Gidwani, D. Holowka, and B. Baird, "Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells," Biochemistry 40, 12422‒12429 (2001). [CrossRef] [PubMed]
  104. P. L. G. Chong and P. T. T. Wong, "Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study," Biochim. Biophys. Acta. 1149, 260‒266 (1993). [CrossRef] [PubMed]
  105. J. Van Rheenen and K. Jalink, "Agonist-induced PIP2 hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale," Mol. Biol. Cell 13, 3257‒3267 (2002). [CrossRef] [PubMed]
  106. J. Adler, A. I. Shevchuk, P. Novak, Y. E. Korchev, and I. Parmryd, "Plasma membrane topography and interpretation of single-particle tracks," Nat. Methods 7, 170‒171 (2010). [CrossRef] [PubMed]
  107. S. E. Sund, J. A. Swanson, and D. Axelrod, "Cell membrane orientation visualized by polarized total internal reflection fluorescence," Biophys. J. 77, 2266‒2283 (1999). [CrossRef] [PubMed]
  108. R. M. Clegg, X. F. Wang and B. Herman, ed., "Fluorescence resonance energy transfer," Fluorescence Imaging Spectroscopy and Microscopy, 13th ed., Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, Vol. 137, Wiley, 1996, pp. 400‒401.
  109. G. H. Patterson, D. W. Piston, and B. G. Barisas, "Förster distances between green fluorescent protein pairs," Anal. Biochem. 284, 438‒440 (2000). [CrossRef] [PubMed]
  110. S. M. Blackman, D. W. Piston, and A. H. Beth, "Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer," Biophys. J. 75, 1117‒1130 (1998). [CrossRef] [PubMed]
  111. I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J. C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, "Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFT-tagged proteins," Biophys. J. 80, 3000‒3008 (2001). [CrossRef] [PubMed]
  112. R. Varma and S. Mayor, "GPI-anchored proteins are organized in submicron domains at the cell surface," Nature 394, 798‒801 (1998). [CrossRef] [PubMed]
  113. J. Gannaway and C. J. R. Sheppard, "Second harmonic imaging in the scanning optical microscope," Opt. Quantum. Electron. 10, 435‒439 (1978). [CrossRef]
  114. M. Flörsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, "In-situ imaging of Langmuir monolayers by second-harmonic microscopy," Thin Solid Films 284, 659‒662 (1996). [CrossRef]
  115. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear imaging of live cells by second harmonic generation," Biophys. J. 77, 3341‒3349 (1999). [CrossRef] [PubMed]
  116. L. Moreaux, O. Sandrea, and J. Mertz, "Membrane imaging by second harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685‒1689 (2000). [CrossRef]
  117. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. U.S.A. 100, 7081‒7086 (2003). [CrossRef] [PubMed]
  118. M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, "Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling," J. Biomed. Optics 13, 054041 (2008). [CrossRef]
  119. O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, "Second harmonic generation imaging microscopy of ovarian cancer," Biophys. J. 96, (3), 296a (2009). [CrossRef]
  120. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, "Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation," Biophys. J. 94, (11), 4504‒4515 (2008). [CrossRef] [PubMed]
  121. S.-W. Teng, H.-Y. Tan, J.-L. Peng, H.-H. Lin, K. H. Kim, W. Lo, Y. Sun, W.-C. Lin, S.-J. Lin, S.-H. Jee, P. T. C. So, and C.-Y. Dong, "Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye," Invest. Ophthalm. Vis. Sci. 47, 1216‒1224 (2006). [CrossRef]
  122. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, "Detection and imaging of noncontractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence," J. Struct. Biol. 162, 500‒508 (2008). [CrossRef] [PubMed]
  123. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, "Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy," Opt. Express 17, 19763‒19777 (2009). [CrossRef] [PubMed]
  124. R. Cicchi, A. Crisci, A. Cosci, G. Nesi, D. Kapsokalyvas, S. Giancane, M. Carini, and F. S. Pavone, "Time- and spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ," Opt. Express 18, 3840‒3849 (2010). [CrossRef] [PubMed]
  125. M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, "Second-harmonic microscopy—a quantitative probe for molecular surface order," Adv. Mater. 9, 1061‒1065 (1997). [CrossRef]
  126. K. Komorowska, S. Brasselet, G. Dutier, J. Zyss, I. Pourlsen, Ledoux Jazdzyk, L. Egelhaaf, M. Gierschner, and H. J. Hanack, "Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds," Chem. Phys. 318, 12‒20 (2005). [CrossRef]
  127. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205‒214 (2002). [CrossRef] [PubMed]
  128. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330‒3342 (2002). [CrossRef] [PubMed]
  129. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation," Opt. Quantum Electron. 37, 1397‒1408 (2005). [CrossRef]
  130. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377‒1386 (2005). [CrossRef] [PubMed]
  131. Y. Sun, W.-L. Chen, S.-J. Lin, S. H. Jee, Y.-F. Chen, L.-C. Lin, P. T. C. So, and C.-Y. Dong, "Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging," Biophys. J. 91, 2620‒2625 (2006). [CrossRef] [PubMed]
  132. F. Tiaho, G. Recher, and D. Rouède, "Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy," Opt. Express 15, 12286‒12295 (2007). [CrossRef] [PubMed]
  133. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32‒38 (2008). [CrossRef] [PubMed]
  134. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, "In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy," J. Biomed. Opt. 14, 014001 (2009). [CrossRef] [PubMed]
  135. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, "Probing myosin structural conformation in vivo by second-harmonic generation microscopy," Proc. Natl Acad. Sci. U.S.A. 107, 7763‒7768 (2010). [CrossRef] [PubMed]
  136. A. M. Pena, T. Boulesteix, T. Dartigalongue, M. Strupler, E. Beaurepaire, and M. C. Schanne-Klein, "Chiroptical effects in the second harmonic generation from collagens I and IV: applications in nonlinear microscopy," Nonlinear Opt. Quantum Opt. 35, 1‒3 (2006).
  137. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M. C. Schanne-Klein, "Measurement of the second order hyperpolarizability of the collagen triple helix and determination of its physical origin," J. Phys. Chem. B 113, 13445 (2009). [CrossRef]
  138. I. Ledoux, C. Lepers, A. Périgaud, J. Badan, and J. Zyss, "Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals," Opt. Commun. 80, 149‒154 (1990). [CrossRef]
  139. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297‒2303 (1989). [CrossRef] [PubMed]
  140. D. T. Poh, "Examination of refractive index of human epidermis in-vitro and in-vivo," Proceedings of the International Conference on Lasers ’96, 1997, STS Press, pp. 118‒125.
  141. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934‒936 (1997). [CrossRef] [PubMed]
  142. D. J. Maitland and J. T. Walsh Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg Med. 20, 310‒318 (1997). [CrossRef] [PubMed]
  143. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, and T. E. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611‒4628 (2005). [CrossRef] [PubMed]
  144. J. Park, N. J. Kemp, H. G. Rylander, and T. E. Milner, "Complex polarization ratio to determine polarization properties of anisotropic tissue using polarization-sensitive optical coherence tomography," Opt. Express 17, 13402‒13417 (2009). [CrossRef] [PubMed]
  145. I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, "Polarization-resolved second harmonic microscopy in anisotropic thick tissues," Opt. Express 18, 19339‒19352 (2010). [CrossRef] [PubMed]
  146. O. Nadiarnykh and P. J. Campagnola, "Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing," Opt. Express 17, 5794‒5806 (2009). [CrossRef] [PubMed]
  147. X. S. Xie, J. Yu, and W. Y. Yang, "Living cells as test tubes," Science 312, 228‒230 (2006). [CrossRef] [PubMed]
  148. M. A. Yuratich and D. C. Hanna, "Coherent anti-Stokes Raman spectroscopy (CARS) selection rules, depolarization ratios and rotational structure," Mol. Phys. 33, 671‒682 (1977). [CrossRef]
  149. S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, "Polarization active Raman spectroscopy and coherent Raman ellipsometry," J. Exp. Theor. Phys. 74, 1272‒1294 (1978).
  150. J.-L. Oudar, R. W. Smith, and Y. R. Shen, "Polarization-sensitive coherent anti-Stokes Raman spectroscopy," Appl. Phys. Lett. 34, 758‒760 (1979). [CrossRef]
  151. J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341‒1343 (2001). [CrossRef] [PubMed]
  152. J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, "Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 100, 9826‒9830 (2003). [CrossRef] [PubMed]
  153. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581‒591 (2005). [CrossRef] [PubMed]
  154. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, "Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids," Opt. Express 16, 10617‒10632 (2008). [CrossRef] [PubMed]
  155. F. Munhoz, H. Rigneault, and S. Brasselet, "Polarization-resolved four wave mixing for structural imaging of collagen in tissues," 2011, (manuscript in preparation)
  156. S. Popov, Y. Svirko, and N. N. Zheludev, Susceptibility Tensors for Nonlinear Optics, IOP Publishing, 1995.
  157. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, "Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study," J. Phys. Chem. B 114, 10200‒10208 (2010). [CrossRef] [PubMed]
  158. A. Messiah, "Clebsch–Gordan coefficients and 3j symbols," Quantum Mechanics, Vol. 2, North Holland, 1962, pp. 1054‒1060.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.

CrossCheck Deposited