OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 1 — Mar. 31, 2012

Cryogenic optical refrigeration

Denis V. Seletskiy, Markus P. Hehlen, Richard I. Epstein, and Mansoor Sheik-Bahae  »View Author Affiliations

Advances in Optics and Photonics, Vol. 4, Issue 1, pp. 78-107 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the field of laser cooling of solids, focusing our attention on the recent advances in cryogenic cooling of an ytterbium-doped fluoride crystal (Yb3+:YLiF4). Recently, bulk cooling in this material to 155 K has been observed upon excitation near the lowest-energy (E4–E5) crystal-field resonance of Yb3+. Furthermore, local cooling in the same material to a minimum achievable temperature of 110 K has been measured, in agreement with the predictions of the laser cooling model. This value is limited only by the current material purity. Advanced material synthesis approaches reviewed here would allow reaching temperatures approaching 80 K. Current results and projected improvements position optical refrigeration as the only viable all-solid-state cooling approach for cryogenic temperatures.

© 2012 OSA

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 9, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 13, 2012
Published: March 22, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Denis V. Seletskiy, Markus P. Hehlen, Richard I. Epstein, and Mansoor Sheik-Bahae, "Cryogenic optical refrigeration," Adv. Opt. Photon. 4, 78-107 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975). [CrossRef]
  2. S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).
  3. D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011). [CrossRef]
  4. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985). [CrossRef] [PubMed]
  5. E. A. Cornell, “Bose–Einstein condensation in a dilute gas; the first 70 years and some recent experiments,” Nobel Prize in Physics, I (2001).
  6. P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929). [CrossRef]
  7. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  8. N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981). [CrossRef]
  9. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995). [CrossRef]
  10. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996). [CrossRef] [PubMed]
  11. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).
  12. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007). [CrossRef]
  13. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009). [CrossRef]
  14. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010). [CrossRef]
  15. S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010). [CrossRef]
  16. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010). [CrossRef]
  17. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004). [CrossRef] [PubMed]
  18. P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures,” J. Appl. Phys. 48(2), 820 (1977). [CrossRef]
  19. A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 11 (1950). [CrossRef]
  20. S. Yatsiv, “Anti-Stokes fluorescence as a cooling process,” in Advances in Quantum Electronics, J. R. Singer, ed. (Columbia University, 1961).
  21. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968). [CrossRef]
  22. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997). [CrossRef]
  23. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23(8), 639–641 (1998). [CrossRef] [PubMed]
  24. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24(15), 1041–1043 (1999). [CrossRef] [PubMed]
  25. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005). [CrossRef]
  26. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999). [CrossRef]
  27. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
  28. M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999). [CrossRef]
  29. A. Rayner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20(5), 1037–1053 (2003). [CrossRef]
  30. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004). [CrossRef]
  31. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010). [CrossRef]
  32. W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010). [CrossRef]
  33. J. R. Fernandez, “Origin of laser-induced internal cooling of Yb,” Proc. SPIE 4645, 135–147 (2002). [CrossRef]
  34. C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, B. Bederson and H. Walther, ed. (Academic, 1999), pp. 161–228.
  35. J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000). [CrossRef]
  36. J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001). [CrossRef]
  37. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000). [CrossRef]
  38. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001). [CrossRef]
  39. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002). [CrossRef] [PubMed]
  40. S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006). [CrossRef]
  41. S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006). [CrossRef]
  42. S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007). [CrossRef]
  43. S. Bigotta, “Laser cooling of solids: new results with single fluoride crystals,” Nuovo Cimento B Ser. 122, 685694 (2007).
  44. D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008). [CrossRef]
  45. J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).
  46. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000). [CrossRef] [PubMed]
  47. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003). [CrossRef]
  48. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008). [CrossRef] [PubMed]
  49. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006). [CrossRef] [PubMed]
  50. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009). [CrossRef] [PubMed]
  51. A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996). [CrossRef]
  52. L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997). [CrossRef]
  53. T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005). [CrossRef]
  54. G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006). [CrossRef] [PubMed]
  55. J. Li, “Laser cooling of semiconductor quantum wells: theoretical framework and strategy for deep optical refrigeration by luminescence upconversion,” Phys. Rev. B 75(15), 155315 (2007). [CrossRef]
  56. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77(23), 235206 (2008). [CrossRef]
  57. G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007). [CrossRef]
  58. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98(17), 177401 (2007). [CrossRef]
  59. D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008). [CrossRef]
  60. P. G. Eliseev, “Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling,” Opto-Electron. Rev. 16, 199–207 (2008). [CrossRef]
  61. G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010). [CrossRef]
  62. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997). [CrossRef]
  63. E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999). [CrossRef]
  64. T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998). [CrossRef]
  65. B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005). [CrossRef]
  66. B. Imangholi, “Investigation of laser cooling in semiconductors,” Ph.D. dissertation (University of Mexico, 2006).
  67. S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008). [CrossRef]
  68. M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007). [CrossRef]
  69. C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011). [CrossRef]
  70. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998). [CrossRef]
  71. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999). [CrossRef]
  72. S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010). [CrossRef]
  73. A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006). [CrossRef]
  74. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010). [CrossRef] [PubMed]
  75. D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011). [CrossRef]
  76. U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009). [CrossRef] [PubMed]
  77. M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009). [CrossRef]
  78. A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011). [CrossRef]
  79. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).
  80. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007). [CrossRef] [PubMed]
  81. S. C. Rand, “Laser cooling of solids by stimulated Raman scattering and fluorescence,” Proc. SPIE 8275, 827509 (2012). [CrossRef]
  82. S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).
  83. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011). [CrossRef]
  84. S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001). [CrossRef]
  85. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009). [CrossRef]
  86. G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol. 27(24), 5597–5601 (2009). [CrossRef]
  87. G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010). [CrossRef]
  88. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  89. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011). [CrossRef] [PubMed]
  90. S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001). [CrossRef]
  91. D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004). [CrossRef]
  92. J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009). [CrossRef]
  93. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007). [CrossRef]
  94. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008). [CrossRef] [PubMed]
  95. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.
  96. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011). [CrossRef] [PubMed]
  97. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964). [CrossRef]
  98. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998). [CrossRef]
  99. G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998). [CrossRef]
  100. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004). [CrossRef]
  101. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  102. A. E. Siegman, Lasers (University Science Books, 1986).
  103. K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991). [CrossRef]
  104. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010). [CrossRef] [PubMed]
  105. C. Hoyt, “Laser cooling in thulium-doped solids,” Ph.D. dissertation (University of New Mexico, 2003).
  106. A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012). [CrossRef]
  107. B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006). [CrossRef]
  108. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002). [CrossRef]
  109. G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006). [CrossRef]
  110. J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009). [CrossRef]
  111. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA, 2009), pp. 33–74.
  112. J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983). [CrossRef]
  113. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968). [CrossRef]
  114. P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987). [CrossRef]
  115. P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984). [CrossRef]
  116. R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001). [CrossRef]
  117. S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).
  118. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004). [CrossRef]
  119. J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975). [CrossRef]
  120. W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980). [CrossRef]
  121. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 1st ed. (Springer, 1981).
  122. A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992). [CrossRef]
  123. C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997). [CrossRef]
  124. L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000). [CrossRef]
  125. I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008). [CrossRef] [PubMed]
  126. U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985). [CrossRef]
  127. M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994). [CrossRef]
  128. P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).
  129. K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985). [CrossRef] [PubMed]
  130. S. Bigotta, Energy Transfer and Cooling Processes in Rare-earth Doped Insulating Crystals (Universita di Pisa, 2006).
  131. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011). [CrossRef]
  132. D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968). [CrossRef]
  133. I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).
  134. R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977). [CrossRef]
  135. I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996). [CrossRef]
  136. P. J. Walker, “Melt growth of rare-earth binary and complex halides,” Prog. Cryst. Growth Characteriz. 3(2–3), 103–119 (1980). [CrossRef]
  137. W. A. Shand, “Single crystal growth and some properties of LiYF4,” J. Cryst. Growth 5(2), 143–146 (1969). [CrossRef]
  138. D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975). [CrossRef]
  139. J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited