OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 2 — Jun. 30, 2012

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang  »View Author Affiliations


Advances in Optics and Photonics, Vol. 4, Issue 2, pp. 157-321 (2012)
http://dx.doi.org/10.1364/AOP.4.000157


View Full Text Article

Enhanced HTML    Acrobat PDF (10256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface plasmons (SPs) are electromagnetic excitations existing at the interface between a metal and a dielectric material. Control and manipulation of light based on SPs at the nanometer scale offers significant advantages in nanophotonic devices with very small elements, since the peculiar properties of SPs can be tailored by construction of nanostructures with various interfaces between metals and dielectric materials. Recent progress in nanostructures for SPs is reviewed. Resonance frequencies or wavelengths of SPs can be tuned by design of metal nanostructures, such as nanoparticles, nanorods, nanowires, nanosheets, and nanodisks. Moreover, SP resonance modes can also be tuned by control of the shapes and sizes of nanostructures, where the resonance modes include longitudinal and transversal resonances, dipolar and multipolar resonances, and Fano resonances. Based on SP coupling for metal nanostructures, metal–semiconductor nanostructures, metal–dielectric nanostructures, and metal–polymer nanostructures, propagating and guiding of SP can be achieved through the metal nanostructures and the hybrid structures. Additionally, metal nanostructures exhibit remarkable field enhancement effects (e.g., local near-field enhancement, and optical transmission enhancement) due to SP coupling. Furthermore, SP nanostructures perform unique focusing and imaging characteristics at the nanometer scale beyond the diffraction limit. Tailoring SPs by control of the nanostructures is expected to be used for design and development of high-performance optical components and circuits, which offer both potential and challenges for new generations of nanophotonic devices.

© 2012 OSA

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Nanomaterials

History
Original Manuscript: March 6, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: May 31, 2012
Published: July 3, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Citation
Junxi Zhang and Lide Zhang, "Nanostructures for surface plasmons," Adv. Opt. Photon. 4, 157-321 (2012)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-4-2-157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012). [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009). [CrossRef]
  7. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003). [CrossRef]
  8. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999). [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008). [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  14. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009). [CrossRef]
  15. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011). [CrossRef] [PubMed]
  16. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009). [CrossRef] [PubMed]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  18. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  19. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  20. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011). [CrossRef] [PubMed]
  21. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999). [CrossRef]
  22. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996). [CrossRef]
  23. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006). [CrossRef] [PubMed]
  24. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005). [CrossRef]
  25. R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003). [CrossRef] [PubMed]
  26. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001). [CrossRef] [PubMed]
  27. V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006). [CrossRef]
  28. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007). [CrossRef]
  29. C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy 28(1–4), 252–257 (1989). [CrossRef]
  30. F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992). [CrossRef]
  31. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995). [CrossRef]
  32. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999). [CrossRef]
  33. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999). [CrossRef]
  34. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001). [CrossRef]
  35. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  36. L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  37. E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007). [CrossRef]
  38. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007). [CrossRef]
  39. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995). [CrossRef]
  40. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005). [CrossRef] [PubMed]
  41. Y. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002). [CrossRef] [PubMed]
  42. B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005). [CrossRef] [PubMed]
  43. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010). [CrossRef] [PubMed]
  44. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010). [CrossRef]
  45. Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16(33), 10234–10239 (2010). [CrossRef] [PubMed]
  46. F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008). [CrossRef]
  47. Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010). [CrossRef] [PubMed]
  48. A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006). [CrossRef] [PubMed]
  49. Y. G. Sun and Y. N. Xia, “Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” J. Am. Chem. Soc. 126(12), 3892–3901 (2004). [CrossRef] [PubMed]
  50. B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005). [CrossRef]
  51. Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, and Y. N. Xia, “Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,” Angew. Chem. Int. Ed. Engl. 44(48), 7913–7917 (2005). [PubMed]
  52. P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).
  53. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005). [PubMed]
  54. J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).
  55. S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007). [PubMed]
  56. S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008). [PubMed]
  57. J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007). [PubMed]
  58. E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009). [PubMed]
  59. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
  60. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
  61. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [PubMed]
  62. F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
  63. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3(4), 543–547 (2003).
  64. Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18(4), 3510–3518 (2010). [PubMed]
  65. B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
  66. C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).
  67. C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994). [PubMed]
  68. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
  69. J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7(7), 1075–1087 (1997).
  70. B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
  71. B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
  72. J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
  73. H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005). [PubMed]
  74. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007). [PubMed]
  75. H. M. Chen, R. S. Liu, and D. P. Tsai, “A versatile route to the controlled synthesis of gold nanostructures,” Cryst. Growth Des. 9(5), 2079–2087 (2009).
  76. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).
  77. G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).
  78. M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 455–458 (2003).
  79. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [PubMed]
  80. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
  81. We have not published this study, but present some observations here.
  82. X. Y. Hu, Z. Y. Wang, T. C. Zhang, X. Y. Zeng, W. Xu, J. X. Zhang, J. Yan, J. P. Zhang, and L. D. Zhang, “Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes,” Appl. Surf. Sci. 254(13), 3845–3848 (2008).
  83. X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011). [PubMed]
  84. S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
  85. M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).
  86. M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).
  87. Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).
  88. A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005). [PubMed]
  89. K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
  90. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
  91. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).
  92. K. H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994). [PubMed]
  93. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
  94. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008). [PubMed]
  95. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007). [PubMed]
  96. K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005). [PubMed]
  97. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
  98. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008). [PubMed]
  99. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
  100. H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008). [PubMed]
  101. H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009). [PubMed]
  102. S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009). [PubMed]
  103. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008). [PubMed]
  104. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
  105. G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
  106. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).
  107. G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).
  108. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006). [PubMed]
  109. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005). [PubMed]
  110. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
  111. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004).
  112. L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
  113. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010). [PubMed]
  114. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
  115. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
  116. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).
  117. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007). [PubMed]
  118. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
  119. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
  120. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [PubMed]
  121. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [PubMed]
  122. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009). [PubMed]
  123. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010). [PubMed]
  124. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010). [PubMed]
  125. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011). [PubMed]
  126. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3 Suppl 3), A303–A311 (2011). [PubMed]
  127. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011). [PubMed]
  128. T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009). [PubMed]
  129. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008). [PubMed]
  130. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
  131. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
  132. Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011). [PubMed]
  133. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
  134. S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
  135. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011). [PubMed]
  136. Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers,” Appl. Phys. Lett. 96(13), 131113 (2010).
  137. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99(8), 081107 (2011).
  138. W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36(18), 3602–3604 (2011). [PubMed]
  139. W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18(10), 10360–10368 (2010). [PubMed]
  140. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009). [PubMed]
  141. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
  142. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).
  143. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [PubMed]
  144. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009). [PubMed]
  145. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008). [PubMed]
  146. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [PubMed]
  147. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007). [PubMed]
  148. Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009). [PubMed]
  149. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007). [PubMed]
  150. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011). [PubMed]
  151. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007). [PubMed]
  152. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003). [PubMed]
  153. M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114(16), 7496–7501 (2010).
  154. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
  155. W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009). [PubMed]
  156. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
  157. S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010). [PubMed]
  158. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
  159. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001). [PubMed]
  160. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009). [PubMed]
  161. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006). [PubMed]
  162. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007). [PubMed]
  163. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
  164. L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010). [PubMed]
  165. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001). [PubMed]
  166. K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).
  167. H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).
  168. H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).
  169. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
  170. L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008). [PubMed]
  171. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105(26), 266801 (2010). [PubMed]
  172. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [PubMed]
  173. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [PubMed]
  174. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006). [PubMed]
  175. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
  176. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [PubMed]
  177. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
  178. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
  179. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [PubMed]
  180. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
  181. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
  182. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007). [PubMed]
  183. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009). [PubMed]
  184. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009). [PubMed]
  185. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [PubMed]
  186. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [PubMed]
  187. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008). [PubMed]
  188. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009). [PubMed]
  189. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [PubMed]
  190. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
  191. Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009). [PubMed]
  192. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [PubMed]
  193. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [PubMed]
  194. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [PubMed]
  195. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
  196. R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002). [PubMed]
  197. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
  198. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
  199. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [PubMed]
  200. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
  201. M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).
  202. A. B. Evlyukhin and S. L. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Phys. Lett. 3(8), 396–400 (2006).
  203. A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
  204. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009).
  205. X. D. Cui and D. Erni, “Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling,” J. Opt. Soc. Am. A 25(7), 1783–1789 (2008).
  206. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19(21), 19973–19986 (2011). [PubMed]
  207. S. M. Raeis Zadeh Bajestani, M. Shahabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B 28(4), 937–943 (2011).
  208. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
  209. N. Yamamoto, K. Araya, and F. García de Abajo, “Photon emission from silver particles induced by a originates electron beam,” Phys. Rev. B 64(20), 205419 (2001).
  210. L. Wang, W. Cai, Y. X. Xiang, X. Z. Zhang, J. J. Xu, and F. J. García de Abajo, “Reduced radiation losses in electron beam excited propagating plasmons,” Opt. Express 19(19), 18713–18720 (2011). [PubMed]
  211. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
  212. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008). [PubMed]
  213. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).
  214. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [PubMed]
  215. Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009). [PubMed]
  216. Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).
  217. Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011). [PubMed]
  218. W. H. Wang, Q. Yang, F. R. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011). [PubMed]
  219. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011). [PubMed]
  220. D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010). [PubMed]
  221. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
  222. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [PubMed]
  223. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009). [PubMed]
  224. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
  225. K. Tanaka, T. T. Minh, and M. Tanaka, “Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines,” Opt. Express 17(2), 1078–1092 (2009). [PubMed]
  226. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [PubMed]
  227. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
  228. S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).
  229. H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trans. Mod. Phys. 111, 1–133 (1988).
  230. J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).
  231. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [PubMed]
  232. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
  233. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
  234. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
  235. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
  236. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2(7), 426–429 (2007). [PubMed]
  237. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010). [PubMed]
  238. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
  239. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [PubMed]
  240. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001). [PubMed]
  241. E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010). [PubMed]
  242. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [PubMed]
  243. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [PubMed]
  244. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [PubMed]
  245. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007). [PubMed]
  246. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007). [PubMed]
  247. H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009). [PubMed]
  248. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
  249. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).
  250. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
  251. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
  252. Z. L. Samson, K. F. MacDonald, and N. I. Zheludev, “Femtosecond active plasmonics: ultrafast control of surface plasmon propagation,” J. Opt. A-Pure Appl. Op. 11, 114031 (2009).
  253. Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36(2), 250–252 (2011). [PubMed]
  254. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999). [PubMed]
  255. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
  256. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
  257. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A-Pure Appl. Op. 8, S87–S93 (2006).
  258. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
  259. M. Wegener, G. Dolling, and S. Linden, “Plasmonics: backward waves moving forward,” Nat. Mater. 6(7), 475–476 (2007). [PubMed]
  260. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [PubMed]
  261. H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006). [PubMed]
  262. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
  263. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [PubMed]
  264. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010). [PubMed]
  265. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [PubMed]
  266. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
  267. K. Kneipp, M. Moskovits, and H. Kneipp, ed., Surface-Enhanced Raman Scattering: Physics and Applications, 2006 (Springer-Verlag).
  268. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [PubMed]
  269. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007). [PubMed]
  270. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
  271. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008). [PubMed]
  272. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [PubMed]
  273. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
  274. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [PubMed]
  275. E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).
  276. H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84(7–8), 199–229 (2009).
  277. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003). [PubMed]
  278. N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
  279. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006). [PubMed]
  280. K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006). [PubMed]
  281. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
  282. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [PubMed]
  283. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010). [PubMed]
  284. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
  285. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
  286. H. Chul Kim and X. Cheng, “Gap surface plasmon polaritons enhanced by a plasmonic lens,” Opt. Lett. 36(16), 3082–3084 (2011). [PubMed]
  287. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [PubMed]
  288. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
  289. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
  290. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
  291. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
  292. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004). [PubMed]
  293. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29(12), 1414–1416 (2004). [PubMed]
  294. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19(23), 22743–22754 (2011). [PubMed]
  295. J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010). [PubMed]
  296. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [PubMed]
  297. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A-Pure Appl. Op. 7, S90–S96 (2005).
  298. H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006). [PubMed]
  299. G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007). [PubMed]
  300. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [PubMed]
  301. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).
  302. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [PubMed]
  303. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
  304. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [PubMed]
  305. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [PubMed]
  306. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [PubMed]
  307. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
  308. J. Zhang and G. P. Wang, “Simultaneous realization of transmission enhancement and directional beaming of dual-wavelength light by a metal nanoslit,” Opt. Express 17(12), 9543–9548 (2009). [PubMed]
  309. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).
  310. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
  311. Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).
  312. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  313. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [PubMed]
  314. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
  315. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010). [PubMed]
  316. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
  317. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011). [PubMed]
  318. C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009). [PubMed]
  319. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010). [PubMed]
  320. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [PubMed]
  321. Y. T. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011). [PubMed]
  322. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010). [PubMed]
  323. J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008). [PubMed]
  324. I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express 19(7), 5888–5894 (2011). [PubMed]
  325. M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107(4), 044303 (2010).
  326. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
  327. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).
  328. A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).
  329. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [PubMed]
  330. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008). [PubMed]
  331. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [PubMed]
  332. Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5(2), 207–212 (2010).
  333. B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express 19(14), 13150–13157 (2011). [PubMed]
  334. X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011). [PubMed]
  335. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
  336. D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl Phys. B Lasers Opt. 86, 7–17 (2007).
  337. S. J. Tan and D. K. Gramotnev, “Analysis of efficiency and optimization of plasmon energy coupling into nanofocusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
  338. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [PubMed]
  339. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009). [PubMed]
  340. E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10(9), 3665–3669 (2010). [PubMed]
  341. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [PubMed]
  342. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [PubMed]
  343. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34(13), 2039–2041 (2009). [PubMed]
  344. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [PubMed]
  345. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).
  346. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010). [PubMed]
  347. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35(4), 541–543 (2010). [PubMed]
  348. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009). [PubMed]
  349. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
  350. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
  351. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
  352. C. L. Zhao, J. Y. Wang, X. F. Wu, and J. S. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
  353. W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010). [PubMed]
  354. L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011). [PubMed]
  355. J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6(2), 269–272 (2011).
  356. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [PubMed]
  357. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
  358. Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).
  359. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
  360. Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011). [PubMed]
  361. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010).
  362. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007). [PubMed]
  363. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007). [PubMed]
  364. A. B. EvIyukhin, A. L. Stepanov, R. Kiyan, and B. N. Chichkov, “Efficiency of surface-plasmon-polariton focusing by curved chains of nanoparticles,” J. Opt. Soc. Am. B 25, 1011–1015 (2008).
  365. S. Kawata, ed., “Near-field optics and surface plasmon polaritons,” in Topics in Applied Physics, 2001 (Springer-Verlag).
  366. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [PubMed]
  367. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
  368. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [PubMed]
  369. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
  370. G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).
  371. Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).
  372. K. W. Kho, S. Zexiang, and O. Malini, “Hyper-spectral confocal nano-imaging with a 2D super-lens,” Opt. Express 19(3), 2502–2518 (2011). [PubMed]
  373. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010). [PubMed]
  374. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005). [PubMed]
  375. X. F. Wu, J. S. Zhang, and Q. H. Gong, “Metal–insulator–metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009). [PubMed]
  376. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [PubMed]
  377. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
  378. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
  379. Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008). [PubMed]
  380. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
  381. S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).
  382. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [PubMed]
  383. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007). [PubMed]
  384. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007). [PubMed]
  385. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
  386. J. Y. Wang, J. S. Zhang, X. F. Wu, H. Luo, and Q. H. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).