OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 1 — Mar. 31, 2013

Theory of Molecular Nonlinear Optics

Mark G. Kuzyk, Kenneth D. Singer, and George I. Stegeman  »View Author Affiliations

Advances in Optics and Photonics, Vol. 5, Issue 1, pp. 4-82 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of molecular nonlinear optics based on the sum-over-states (SOS) model is reviewed. The interaction of radiation with a single wtpisolated molecule is treated by first-order perturbation theory, and expressions are derived for the linear ( α i j ) polarizability and nonlinear ( β i j k , γ i j k l ) molecular hyperpolarizabilities in terms of the properties of the molecular states and the electric dipole transition moments for light-induced transitions between them. Scale invariance is used to estimate fundamental limits for these polarizabilities. The crucial role of the spatial symmetry of both the single molecules and their ordering in dense media, and the transition from the single molecule to the dense medium case (susceptibilities χ i j ( 1 ) , χ i j k ( 2 ) , χ i j k l ( 3 ) ), is discussed. For example, for β i j k , symmetry determines whether a molecule can support second-order nonlinear processes or not. For asymmetric molecules, examples of the frequency dispersion based on a two-level model (ground state and one excited state) are the simplest possible for β i j k and examples of the resulting frequency dispersion are given. The third-order susceptibility is too complicated to yield simple results in terms of symmetry properties. It will be shown that whereas a two-level model suffices for asymmetric molecules, symmetric molecules require a minimum of three levels in order to describe effects such as two-photon absorption. The frequency dispersion of the third-order susceptibility will be shown and the importance of one and two-photon transitions will be discussed.

© 2013 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

Original Manuscript: July 16, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 1, 2012
Published: March 26, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Mark G. Kuzyk, Kenneth D. Singer, and George I. Stegeman, "Theory of Molecular Nonlinear Optics," Adv. Opt. Photon. 5, 4-82 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 4th Series 50(332), 337–348 (1875).
  2. J. Kerr, “Electro-optic observations on various liquids,” Philos. Mag. 5th Series 8(47), 85–102, 202–245 (1879).
  3. J. Kerr, “Electro-optic observations on various liquids,” J. Phys. Theor. Appl. 8, 414–418 (1879).
  4. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960). [CrossRef]
  5. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962). [CrossRef]
  6. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961). [CrossRef]
  7. N. Bloembergen, Nonlinear Optics (Addison-Wesley, 1965) and references therein.
  8. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962). [CrossRef]
  9. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995). [CrossRef]
  10. J. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962). [CrossRef]
  11. G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).
  12. G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).
  13. M. Di Domenico, “Calculation of the nonlinear optical tensor coefficients in oxygen-octahedra ferroelectrics,” Appl. Phys. Lett. 12(10), 352–355 (1968). [CrossRef]
  14. M. Di Domenico, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969). [CrossRef]
  15. B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7(6), 2600–2626 (1973). [CrossRef]
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17 (1964). [CrossRef]
  17. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968). [CrossRef]
  18. M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969). [CrossRef]
  19. P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972). [CrossRef]
  20. A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).
  21. D. D. Eley, “Phthalocyanines as semiconductors,” Nature 162(4125), 819 (1948). [CrossRef]
  22. A. Pochettino, “Sul comportamento foto-elettrico dell’antracene,” Accad. Lincei Rend. 15, 355 (1906).
  23. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, 1999).
  24. H. Kuhn, “Free electron model for absorption spectra of organic dyes,” J. Chem. Phys. 16(8), 840–841 (1948). [CrossRef]
  25. H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17(12), 1198–1212 (1949). [CrossRef]
  26. B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].
  27. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977). [CrossRef]
  28. S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979). [CrossRef]
  29. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971). [CrossRef]
  30. J. F. Ward, “Calculation of nonlinear optical susceptibility using diagrammatic perturbation theory,” Phys. Rev. 37, 1–18 (1965).
  31. B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974). [CrossRef]
  32. K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981). [CrossRef]
  33. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975). [CrossRef]
  34. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67(2), 446–457 (1977). [CrossRef]
  35. J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977). [CrossRef]
  36. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991). [CrossRef]
  37. J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994). [CrossRef]
  38. T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994). [CrossRef]
  39. S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998). [CrossRef]
  40. V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000). [CrossRef]
  41. J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982). [CrossRef]
  42. J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982). [CrossRef]
  43. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986). [CrossRef]
  44. M. G. Kuzyk, K. D. Singer, and R. J. Twieg, eds., feature issue on “Organic and Polymeric Nonlinear Optical Materials,” J. Opt. Soc. Am. B 15(1–2) 1–932 (1998).
  45. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987). [CrossRef]
  46. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988). [CrossRef]
  47. M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991). [CrossRef]
  48. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998). [CrossRef]
  49. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988). [CrossRef]
  50. G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981). [CrossRef]
  51. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010). [CrossRef]
  52. C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976). [CrossRef]
  53. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010). [CrossRef]
  54. P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012). [CrossRef]
  55. P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011). [CrossRef]
  56. T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983). [CrossRef]
  57. C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005). [CrossRef]
  58. F. Zaera, “Probing liquid/solid interfaces at the molecular level,” Chem. Rev. 112(5), 2920–2986 (2012). [CrossRef]
  59. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). [CrossRef]
  60. S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011). [CrossRef]
  61. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011). [CrossRef]
  62. L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).
  63. K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008). [CrossRef]
  64. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009). [CrossRef]
  65. A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008). [CrossRef]
  66. G. C. R. Ellis-Davies, “Two-photon microscopy for chemical neuroscience,” ACS Chem. Neurosci. 2(4), 185–197 (2011). [CrossRef]
  67. S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009). [CrossRef]
  68. M. G. Kuzyk and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).
  69. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).
  70. W. Thomas, “Über die zahl der dispersionselektronen, die einem station aren zustande zugeordnet sind (vorlaufige mitteilung),” Naturwissenschaften 13(28), 627 (1925). [CrossRef]
  71. W. Kuhn, “Über die gesamtstarke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. A Hadrons Nuclei 33, 408–412 (1925).
  72. F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925). [CrossRef]
  73. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7(5), 774–780 (2001). [CrossRef]
  74. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007). [CrossRef]
  75. J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008). [CrossRef]
  76. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221 (2000). [CrossRef]
  77. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25(16), 1183–1185 (2000). [CrossRef]
  78. M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90(3), 039902 (2003). [CrossRef]
  79. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities: erratum,” Opt. Lett. 28(2), 135 (2003). [CrossRef]
  80. Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005). [CrossRef]
  81. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31(19), 2891–2893 (2006). [CrossRef]
  82. H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007). [CrossRef]
  83. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004). [CrossRef]
  84. J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005). [CrossRef]
  85. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007). [CrossRef]
  86. S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993). [CrossRef]
  87. F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994). [CrossRef]
  88. K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974). [CrossRef]
  89. B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987). [CrossRef]
  90. N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011). [CrossRef]
  91. M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992). [CrossRef]
  92. For an introduction to the subject including examples, see: R. C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals(Springer, 2010).
  93. J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978). [CrossRef]
  94. V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000). [CrossRef]
  95. V. P. Ostroverkhov, “Chiral second order nonlinear optics,” Ph.D. dissertation (Case Western Reserve University, 2001).
  96. K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003). [CrossRef]
  97. V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001). [CrossRef]
  98. J. F. Nye, Physical Properties of Crystals (Oxford University, 1985).
  99. G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993). [CrossRef]
  100. Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008). [CrossRef]
  101. C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004). [CrossRef]
  102. M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012). [CrossRef]
  103. V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001). [CrossRef]
  104. L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).
  105. L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005). [CrossRef]
  106. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  107. C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992). [CrossRef]
  108. G. I. Stegeman, M. G. Kuzyk, D. G. Papazoglou, and S. Tzortzakis, “Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited],” Opt. Express 19(23), 22486–22495 (2011). [CrossRef]
  109. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990). [CrossRef]
  110. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudess,” Adv. Opt. Photon. 2(1), 60–200 (2010). [CrossRef]
  111. G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009). [CrossRef]
  112. G. I. Stegeman, “Nonlinear optics of conjugated polymers and linear molecules,” Nonlinear Opt. Quantum Opt. 43(1), 143158 (2012).
  113. D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997). [CrossRef]
  114. J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12(12), 2360–2371 (1995). [CrossRef]
  115. W. E. Torruellas, B. L. Lawrence, G. I. Stegeman, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21(21), 1777–1779 (1996). [CrossRef]
  116. D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997). [CrossRef]
  117. P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991). [CrossRef]
  118. For example, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1996).
  119. V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001). [CrossRef]
  120. D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009). [CrossRef]
  121. M. G. Kuzyk, “Third order nonlinear optical processes in organic liquids,” Ph.D. dissertation (University of Pennsylvania, 1985).
  122. J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992). [CrossRef]
  123. J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992). [CrossRef]
  124. A. Baev, J. Autschbach, R. W. Boyd, and P. N. Prasad, “Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity,” Opt. Express 18(8), 8713–8721 (2010). [CrossRef]
  125. G. R. Meredith, “Local field cascading in third-order non-linear optical phenomena of liquids,” Chem. Phys. Lett. 92(2), 165–171 (1982). [CrossRef]
  126. G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982). [CrossRef]
  127. N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011). [CrossRef]
  128. G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981). [CrossRef]
  129. G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996). [CrossRef]
  130. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22(5), 274–276 (1997). [CrossRef]
  131. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970). [CrossRef]
  132. M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002). [CrossRef]
  133. F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998). [CrossRef]
  134. M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second order nonlinear optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6(4), 742–752 (1989). [CrossRef]
  135. C. P. J. M. van der Vorst and S. J. Picken, “Electric field poling of acceptor–donor molecules,” J. Opt. Soc. Am. B 7(3), 320–325 (1990). [CrossRef]
  136. W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).
  137. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).
  138. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).
  139. I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985). [CrossRef]
  140. I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985). [CrossRef]
  141. G. J. Ashwell, T. Handa, and R. Ranjan, “Improved second-harmonic generation from homomolecular Langmuir-Blodgett films of a transparent dye,” J. Opt. Soc. Am. B 15(1), 466–470 (1998). [CrossRef]
  142. I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987). [CrossRef]
  143. A. Painelli, “Vibronic contribution to static NLO properties: exact results for the DA dimer,” Chem. Phys. Lett. 285(5–6), 352–358 (1998). [CrossRef]
  144. S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004). [CrossRef]
  145. D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998). [CrossRef]
  146. V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000). [CrossRef]
  147. D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000). [CrossRef]
  148. G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993). [CrossRef]
  149. B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997). [CrossRef]
  150. H. Hui, S. Webster, D. Hagan, and E. Van Stryland, CREOL, University of Central Florida, are working on a manuscript, title and journal to be determined.
  151. S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981). [CrossRef]
  152. J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989). [CrossRef]
  153. J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991). [CrossRef]
  154. D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995). [CrossRef]
  155. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).
  156. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988). [CrossRef]
  157. M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41(9), 5098–5109 (1990). [CrossRef]
  158. S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear optical response of a quantum system,” J. Opt. Soc. Am. B 28(4), 882–891 (2011). [CrossRef]
  159. M. G. Kuzyk, “A bird’s-eye view of nonlinear optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).
  160. J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011). [CrossRef]
  161. M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear optical materials,” J. Mater. Chem. 19(40), 7444–7465 (2009). [CrossRef]
  162. J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited