OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 1 — Mar. 31, 2013

The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics

Jianming Wen, Yong Zhang, and Min Xiao  »View Author Affiliations


Advances in Optics and Photonics, Vol. 5, Issue 1, pp. 83-130 (2013)
http://dx.doi.org/10.1364/AOP.5.000083


View Full Text Article

Enhanced HTML    Acrobat PDF (3362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Talbot effect, also referred to as self-imaging or lensless imaging, is of the phenomena manifested by a periodic repetition of planar field distributions in certain types of wave fields. This phenomenon is finding applications not only in optics, but also in a variety of research fields, such as acoustics, electron microscopy, plasmonics, x ray, and Bose–Einstein condensates. In optics, self-imaging is being explored particularly in image processing, in the production of spatial-frequency filters, and in optical metrology. In this article, we give an overview of recent advances on the effect from classical optics to nonlinear optics and quantum optics. Throughout this review article there is an effort to clearly present the physical aspects of the self-imaging phenomenon. Mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite the rapid progress on the subject, new ideas and applications of Talbot self-imaging are still expected in the future.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(110.6760) Imaging systems : Talbot and self-imaging effects
(260.1960) Physical optics : Diffraction theory

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: November 13, 2012
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 25, 2013
Published: March 29, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Jianming Wen, Yong Zhang, and Min Xiao, "The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics," Adv. Opt. Photon. 5, 83-130 (2013)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-5-1-83


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).
  2. Lord Rayleigh, “On copying diffraction gratings and on some phenomenon connected therewith,” Philos. Mag. 11, 196–205 (1881).
  3. A. Winkelmann, “Ubereinige Erscheinungen, die bei der Beugung des Lichtesdurch Gitter Auftreten,” Ann. Phys. (Leipzig) 332, 905–954 (1908). [CrossRef]
  4. H. Weisel, “Uber die nach Fresnelscher Art Beobachteten Beugungserscheninungen der Gitter,” Ann. Phys. (Leipzig) 338, 995–1031(1910). [CrossRef]
  5. M. Wolfke, “Uber die Abbidung eines Gitters Au erhald der Einstellebene,” Ann. Phys. (Leipzig) 345, 194–200 (1913). [CrossRef]
  6. J. M. Cowley and A. F. Moodie, “Fourier images I. The point source,” Proc. Phys. Soc. (London) B 70, 486–496 (1957). [CrossRef]
  7. J. M. Cowley and A. F. Moodie, “Fourier images II. The out-of-focus patterns,” Proc. Phys. Soc. (London) B 70, 497–504 (1957). [CrossRef]
  8. J. M. Cowley and A. F. Moodie, “Fourier images III. Finite sources,” Proc. Phys. Soc. (London) B 70, 505–513 (1957). [CrossRef]
  9. J. M. Cowley and A. F. Moodie, “Fourier images IV. The phase grating,” Proc. Phys. Soc. London 76, 378–384 (1960). [CrossRef]
  10. G. L. Rogers, “Interesting paradox in Fourier images,” J. Opt. Soc. Am. 62, 917–918 (1972). [CrossRef]
  11. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–381 (1965). [CrossRef]
  12. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967). [CrossRef]
  13. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.
  14. J. M. Cowley, Diffraction Physics (North-Holland, 1995).
  15. M. V. Berry, I. Marzoli, and W. P. Schleich, “Quantum carpets, carpets of light,” Phys. World 14(6), 39–44 (2001).
  16. D. Wojcik, I. Bialynicki-Birula, and K. Zyczkowski, “Time evolution of quantum fractals,” Phys. Rev. Lett. 85, 5022–5025 (2000). [CrossRef]
  17. C. Leichtle, I. S. Averbukh, and W. P. Schleich, “Generic structures of multilevel quantum beats,” Phys. Rev. Lett. 77, 3999–4002 (1996). [CrossRef]
  18. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996). [CrossRef]
  19. H. Mack, M. Bienert, F. Haug, M. Freyberger, and W. P. Schleich, “Wave packets can factorize numbers,” Phys. Status Solidi B 233, 408–415 (2002). [CrossRef]
  20. R. W. Robinett, “Quantum wave packet revivals,” Phys. Rep. 392, 1–119 (2004). [CrossRef]
  21. E. Lau, “Beugungserscheinungen an Doppelrastern,” Ann. Phys. (Leipzig) 6, 417–423 (1948). [CrossRef]
  22. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, R. A. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. E. Pritchard, “Optics and interferometer with Na molecules,” Phys. Rev. Lett. 74, 4783–4786 (1995). [CrossRef]
  23. L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion Talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999). [CrossRef]
  24. B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger, “Matter-wave interferometer for large molecules,” Phys. Rev. Lett. 88, 100404 (2002). [CrossRef]
  25. K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, “Colloquium: quantum interference of clusters and molecules,” Rev. Mod. Phys. 84, 157–173 (2012). [CrossRef]
  26. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981). [CrossRef]
  27. F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998). [CrossRef]
  28. J. Azana and M. A. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38, 6700–6704 (1999). [CrossRef]
  29. J. Azana and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999). [CrossRef]
  30. J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Quantum Electron. 7, 728–744 (2001). [CrossRef]
  31. J. Azana, “Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers,” Opt. Lett. 30, 227–229(2005). [CrossRef]
  32. J. A. Bolger, P. Hu, J. T. Mok, J. L. Blows, and B. J. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249, 431–439 (2005). [CrossRef]
  33. J. P. Guigay, “On Fresnel diffraction by one-dimensional periodic objects, with application to structure determination of phase objects,” Opt. Acta 18, 677–682 (1971).
  34. J. Westerholm, J. Turunen, and J. Huttunen, “Fresnel diffraction in fractional Talbot planes: a new formulation,” J. Opt. Soc. Am. A 11, 1283–1290 (1994). [CrossRef]
  35. H. Hamam, “Simplified linear formulation of Fresnel diffraction,” Opt. Commun. 144, 89–98 (1997). [CrossRef]
  36. V. Arrizon and J. Ojeda-Castaneda, “Fresnel diffraction of substructured gratings: matrix description,” Opt. Lett. 20, 118–120 (1995). [CrossRef]
  37. V. Arrizon, J. G. Ibarra, and J. Ojeda-Castaneda, “Matrix formulation of the Fresnel transform of complex transmittance gratings,” J. Opt. Soc. Am. A 13, 2414–2422 (1996). [CrossRef]
  38. S. B. Tucker, J. Ojeda-Castaneda, and W. T. Cathey, “Matrix description of near-field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16, 316–322 (1999). [CrossRef]
  39. C.-S. Guo, X. Yin, L.-W. Zhu, and Z.-P. Hong, “Analytical expression for phase distribution of a hexagonal array at fractional Talbot planes,” Opt. Lett. 32, 2079–2081 (2007). [CrossRef]
  40. L.-W. Zhu, X. Yin, Z.-P. Hong, and C.-S. Guo, “Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25, 203–210(2008). [CrossRef]
  41. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990). [CrossRef]
  42. T. J. Suleski, “Generation of Lohmann images from binary-phase Talbot array illuminators,” Appl. Opt. 36, 4686–4691 (1997). [CrossRef]
  43. P. Xi, C. Zhou, E. Dai, and L. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27, 228–230 (2002). [CrossRef]
  44. M. Testorf, “Designing Talbot array illuminators with phase-space optics,” J. Opt. Soc. Am. A 23, 187–192 (2006). [CrossRef]
  45. J. Ojeda-Castaneda and E. E. Sicre, “Quasi ray-optical approach to longitudinal periodicities of free and bounded wavefields,” Opt. Acta 32, 17–26 (1985). [CrossRef]
  46. M. Testorf and J. Ojeda-Castaneda, “Fractional Talbot effect: analysis in phase space,” J. Opt. Soc. Am. A 13, 119–125 (1996). [CrossRef]
  47. M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics (McGraw Hill, 2010).
  48. R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Opt. Commun. 13, 259–264 (1975). [CrossRef]
  49. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  50. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005). [CrossRef]
  51. V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, “Self-imaging silicon Raman amplifier,” Opt. Express 15, 3396–3405 (2007). [CrossRef]
  52. Y. Wang, K. Zhou, X. Zhang, K. Yang, Y. Wang, Y. Song, and S. Liu, “Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays,” Opt. Lett. 35, 685–687 (2010). [CrossRef]
  53. A. W. Lohmann and J. Ojeda-Castaneda, “Spatial periodicities in partially coherent fields,” Opt. Acta 30, 475–479 (1983). [CrossRef]
  54. G. Indebetouw, “Propagation of spatially periodic wavefields,” Opt. Acta 31, 531–539 (1984). [CrossRef]
  55. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  56. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989). [CrossRef]
  57. D. Mehuys, W. Streifer, R. G. Waats, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823–825 (1991). [CrossRef]
  58. C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201118 (2005). [CrossRef]
  59. M. R. Dennis, N. I. Zheludev, and F. Javier Garcia de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692–9700 (2007). [CrossRef]
  60. A. Maradudin and T. Leskova, “The Talbot effect for a surface plasmon polariton,” New J. Phys. 11, 033004 (2009). [CrossRef]
  61. G. Niconoff, J. Sanchez-Gil, H. Sanchez, and A. Leija, “Self-imaging and caustics in two-dimensional surface plasmon optics,” Opt. Commun. 281, 2316–2320 (2008). [CrossRef]
  62. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17, 19757–19762(2009). [CrossRef]
  63. S. Cherukulappurath, D. Heinis, J. Cesario, N. F. van Hulst, S. Enoch, and R. Quidant, “Local observation of plasmon focusing in Talbot carpets,” Opt. Express 17, 23772–23784 (2009). [CrossRef]
  64. W. Zhang, X. Huang, and Z. Lu, “Super Talbot effect in indefinite metamaterial,” Opt. Express 19, 15297–15303 (2011). [CrossRef]
  65. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416–419 (1973). [CrossRef]
  66. R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Opt. 6, 253–262 (1975). [CrossRef]
  67. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109, 033902 (2012). [CrossRef]
  68. P. Cloetens, J. P. Guigay, C. De Martino, J. Baruchel, and M. Schlenker, “Fractional Talbot imaging of phase gratings with hard x rays,” Opt. Lett. 22, 1059–1061 (1997). [CrossRef]
  69. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002). [CrossRef]
  70. A. Momose, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003). [CrossRef]
  71. T. Weitkamp, B. Nohammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005). [CrossRef]
  72. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006). [CrossRef]
  73. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005). [CrossRef]
  74. W. Yashiro, Y. Takeda, and A. Momose, “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry,” J. Opt. Soc. Am. A 25, 2025–2039 (2008). [CrossRef]
  75. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  76. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008). [CrossRef]
  77. P. Peier, S. Pilz, F. Muller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70–B75 (2008). [CrossRef]
  78. B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009). [CrossRef]
  79. Y. Zhang, J.-M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104, 183901 (2010). [CrossRef]
  80. J.-M. Wen, Y. Zhang, S. N. Zhu, and M. Xiao, “Theory of nonlinear Talbot effect,” J. Opt. Soc. Am. B 28, 275–280 (2011). [CrossRef]
  81. Z. Chen, D. Liu, Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Fractional second-harmonic Talbot effect,” Opt. Lett. 37, 689–691 (2012). [CrossRef]
  82. D. Liu, Y. Zhang, Z. Chen, J.-M. Wen, and M. Xiao, “Acousto-optic tunable second-harmonic Talbot effect based on periodically poled LiNbO3 crystals,” J. Opt. Soc. Am. B 29, 3325–3329 (2012). [CrossRef]
  83. U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006). [CrossRef]
  84. M. Paturzo, P. De Natale, S. De Nicol, P. Ferraro, S. Mailis, R. Eason, G. Coppola, M. Iodice, and M. Gioffre, “Tunable two-dimensional hexagonal phase array in domain-engineered Z-cut lithium niobate crystal,” Opt. Lett. 31, 3161–3166 (2006). [CrossRef]
  85. K.-H. Luo, J.-M. Wen, X.-H. Chen, Q. Liu, M. Xiao, and L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009). [CrossRef]
  86. K.-H. Luo, J.-M. Wen, X.-H. Chen, Q. Liu, M. Xiao, and L.-A. Wu, “Erratum: Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 83, 029902 (2011). [CrossRef]
  87. C. H. R. Ooi and B. L. Lan, “Intense nonclassical light: controllable two-photon Talbot effect,” Phys. Rev. A 81, 063832 (2010). [CrossRef]
  88. V. Torres-Company, J. Lancis, H. Lajunen, and A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011). [CrossRef]
  89. E. Poem and Y. Silberberg, “Photon correlations in multimode waveguides,” Phys. Rev. A 84, 041805(R) (2011). [CrossRef]
  90. K.-H. Luo, X.-H. Chen, Q. Liu, and L.-A. Wu, “Nonlocal Talbot self-imaging with incoherent light,” Phys. Rev. A 82, 033803 (2010). [CrossRef]
  91. X.-B. Song, J. Xiong, X. Zhang, and K. Wang, “Second-order Talbot self-imaging with pseudothermal light,” Phys. Rev. A 82, 033823 (2010). [CrossRef]
  92. X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, and L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011). [CrossRef]
  93. J.-M. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011). [CrossRef]
  94. H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998). [CrossRef]
  95. B. Erkman and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010). [CrossRef]
  96. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  97. M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996). [CrossRef]
  98. J.-M. Wen, P. Xu, M. H. Rubin, and Y.-H. Shih, “Transverse correlations in triphoton entanglement: geometrical and physical optics,” Phys. Rev. A 76, 023828 (2007). [CrossRef]
  99. M. D’Angelo, M. V. Chekhova, and Y. H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  100. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited