OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 2 — Jun. 30, 2013

Terahertz dielectric waveguides

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott  »View Author Affiliations

Advances in Optics and Photonics, Vol. 5, Issue 2, pp. 169-215 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2132 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several classes of non-planar metallic and dielectric waveguides have been proposed in the literature for guidance of terahertz (THz) or T-ray radiation. In this review, we focus on the development of dielectric waveguides, in the THz regime, with reduced loss and dispersion. First, we examine different THz spectroscopy configurations and fundamental equations employed for characterization of THz waveguides. Then we divide THz dielectric waveguides into three classes: solid-core, hollow-core, and porous-core waveguides. The guiding mechanism, fabrication steps, measured loss, and dispersion are presented for the waveguides in each class in chronological order. The goal of this review is to compare and contrast the current solutions for guiding THz radiation.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.3090) Physical optics : Infrared, far

ToC Category:
Optical Devices

Original Manuscript: February 12, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 9, 2013
Published: July 3, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott, "Terahertz dielectric waveguides," Adv. Opt. Photon. 5, 169-215 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007). [CrossRef]
  2. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007). [CrossRef]
  3. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).
  4. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, 2009).
  5. S. L. Dexheimer, Terahertz Spectroscopy Principles and Applications (CRC Press, 2008).
  6. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991).
  7. J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608 (2011). [CrossRef]
  8. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50 (2010). [CrossRef]
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  11. T. M. Monro, “Beyond the diffraction limit,” Nat. Photonics 1, 89–90 (2007). [CrossRef]
  12. K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213 (2006). [CrossRef]
  13. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89 (2009). [CrossRef]
  14. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006). [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006). [CrossRef]
  16. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012). [CrossRef]
  17. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000). [CrossRef]
  18. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001). [CrossRef]
  19. S. Atakaramians, “Terahertz waveguides: a study of microwires and porous fibres,” Ph.D. thesis (The University of Adelaide, 2011).
  20. D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980). [CrossRef]
  21. P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981). [CrossRef]
  22. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986). [CrossRef]
  23. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000). [CrossRef]
  24. D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987). [CrossRef]
  25. K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).
  26. C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech. MT-17, 1087–1090 (1969). [CrossRef]
  27. C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures (Wiley, 2001).
  28. D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion,” Appl. Phys. Lett. 47, 33–35 (1985). [CrossRef]
  29. R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987). [CrossRef]
  30. W. Withayachumnankul, “Engineering aspects of terahertz time-domain spectroscopy,” Ph.D. thesis (The University of Adelaide, 2009).
  31. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999). [CrossRef]
  32. M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  33. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989). [CrossRef]
  34. A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005). [CrossRef]
  35. T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006). [CrossRef]
  36. Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007). [CrossRef]
  37. L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009). [CrossRef]
  38. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006). [CrossRef]
  39. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008). [CrossRef]
  40. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009). [CrossRef]
  41. T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  42. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005). [CrossRef]
  43. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009). [CrossRef]
  44. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008). [CrossRef]
  45. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009). [CrossRef]
  46. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007). [CrossRef]
  47. S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011). [CrossRef]
  48. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef]
  49. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  50. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef]
  51. R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001).
  52. J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988). [CrossRef]
  53. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006). [CrossRef]
  54. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001). [CrossRef]
  55. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [CrossRef]
  56. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009). [CrossRef]
  57. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004). [CrossRef]
  58. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008). [CrossRef]
  59. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  60. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
  61. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004). [CrossRef]
  62. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005).
  63. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  64. J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009). [CrossRef]
  65. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011). [CrossRef]
  66. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000). [CrossRef]
  67. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011). [CrossRef]
  68. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006). [CrossRef]
  69. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  70. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [CrossRef]
  71. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008). [CrossRef]
  72. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
  73. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009). [CrossRef]
  74. K. J. Rowland, “Guiding light in low-index media via multilayer waveguides,” Ph.D. thesis (The University of Adelaide, 2010).
  75. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  76. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef]
  77. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef]
  78. T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004). [CrossRef]
  79. F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [CrossRef]
  80. A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007). [CrossRef]
  81. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008). [CrossRef]
  82. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008). [CrossRef]
  83. K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008). [CrossRef]
  84. K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012). [CrossRef]
  85. T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003). [CrossRef]
  86. T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.
  87. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005). [CrossRef]
  88. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009). [CrossRef]
  89. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  90. T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  91. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011). [CrossRef]
  92. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008). [CrossRef]
  93. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009). [CrossRef]
  94. D. R. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010). [CrossRef]
  95. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010). [CrossRef]
  96. R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).
  97. The confinement loss for axial mode propagation is the loss of power through the transverse structure, which is also known as leakage loss.
  98. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008). [CrossRef]
  99. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005). [CrossRef]
  100. Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008). [CrossRef]
  101. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008). [CrossRef]
  102. L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51, 1711–1714 (2009). [CrossRef]
  103. L. Vincetti and A. Polemi, “Hollow core fiber for THz applications,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2009), pp. 1–4.
  104. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  105. R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007). [CrossRef]
  106. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011). [CrossRef]
  107. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef]
  108. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009). [CrossRef]
  109. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011). [CrossRef]
  110. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011). [CrossRef]
  111. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011). [CrossRef]
  112. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010). [CrossRef]
  113. W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009). [CrossRef]
  114. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009). [CrossRef]
  115. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012). [CrossRef]
  116. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013). [CrossRef]
  117. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000). [CrossRef]
  118. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000). [CrossRef]
  119. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008). [CrossRef]
  120. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  121. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006). [CrossRef]
  122. S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.
  123. B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009). [CrossRef]
  124. B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010). [CrossRef]
  125. H. W. Chen, C. M. Chiu, C. H. Lai, J. L. Kuo, P. J. Chiang, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Subwavelength dielectric-fiber-based THz coupler,” J. Lightwave Technol. 27, 1489–1495 (2009). [CrossRef]
  126. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008). [CrossRef]
  127. M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011). [CrossRef]
  128. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004). [CrossRef]
  129. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981). [CrossRef]
  130. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011). [CrossRef]
  131. G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007). [CrossRef]
  132. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  133. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [CrossRef]
  134. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [CrossRef]
  135. S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009). [CrossRef]
  136. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.
  137. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009). [CrossRef]
  138. S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent6,418,258 (July9, 2002).
  139. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004). [CrossRef]
  140. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009). [CrossRef]
  141. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010). [CrossRef]
  142. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004). [CrossRef]
  143. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007). [CrossRef]
  144. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007). [CrossRef]
  145. H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.
  146. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006). [CrossRef]
  147. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited