OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 3 — Sep. 30, 2013

Semiconductor nanowire lasers

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong  »View Author Affiliations

Advances in Optics and Photonics, Vol. 5, Issue 3, pp. 216-273 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Semiconductor nanowires (or other wire-like nanostructures, including nanoribbons and nanobelts) synthesized by bottom-up chemical growth show single-crystalline structures, excellent geometric uniformities, subwavelength transverse dimensions, and relatively high refractive indices, making these one-dimensional structures ideal optical nanowaveguides with tight optical confinement and low scattering loss. When properly pumped by optical or electrical means, lasing oscillation can be readily established inside these high-gain active nanowires with feedback from endface reflection or near-field coupling effects, making it possible to realize nanowire lasers with miniature sizes and high flexibilities. Also, the wide-range material availability bestows the semiconductor nanowire with lasing wavelength selectable within a wide spectral range from ultraviolet (UV) to near infrared (IR). As nanoscale coherent light sources, in recent years, nanowire lasers have been attracting intensive attention for both fundamental research and technological applications ranging from optical sensing, signal processing, and on-chip communications to quantum optics. Here, we present a review of the status and perspectives of semiconductor nanowire lasers, with a particular emphasis on their optical characteristics categorized in two groups: (1) waveguiding related properties in Section 3, which includes waveguide modes, near-field coupling, endface reflection, substrate-induced effects, and nanowire microcavities, and (2) optically pumped semiconductor nanowire lasers in Section 4, starting from principles and basic types of UV, visible, and near-IR nanowire lasers relying on Fabry–Perot cavities, to advanced configurations including wavelength-tunable, single-mode operated, fiber-coupled, and metal-incorporated nanowire lasing structures for more possibilities. In addition, the material aspects of semiconductor nanowires, including nanowire synthesis and electrically driven nanowire lasers, are briefly reviewed in Sections 2 and 5, respectively. Finally, in Section 6 we present a brief summary of semiconductor nanowire lasers regarding their current challenges and future opportunities.

© 2013 Optical Society of America

OCIS Codes
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: December 20, 2012
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 4, 2013
Published: July 22, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong, "Semiconductor nanowire lasers," Adv. Opt. Photon. 5, 216-273 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Feynman, “There’s plenty of room at the bottom,” J. Microelectromech. Syst. 1, 60–66 (1992). [CrossRef]
  2. C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bull. 28, 486–491 (2003). [CrossRef]
  3. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007). [CrossRef]
  4. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  5. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009). [CrossRef]
  6. S. S. Mao, “Nanolasers: lasing from nanoscale quantum wires,” Int. J. Nanotechnology 1, 42–85 (2004).
  7. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009). [CrossRef]
  8. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003). [CrossRef]
  9. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002). [CrossRef]
  10. L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005). [CrossRef]
  11. E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004). [CrossRef]
  12. R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008). [CrossRef]
  13. N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).
  14. R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962). [CrossRef]
  15. N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962). [CrossRef]
  16. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962). [CrossRef]
  17. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962). [CrossRef]
  18. F. H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam,” Appl. Phys. Lett. 9, 13–16 (1966). [CrossRef]
  19. C. E. Hurwitz, “Electron-beam pumped lasers of CdSe and CdS,” Appl. Phys. Lett. 8, 121–124 (1966). [CrossRef]
  20. R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978). [CrossRef]
  21. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994). [CrossRef]
  22. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]
  23. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997). [CrossRef]
  24. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  25. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998). [CrossRef]
  26. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001). [CrossRef]
  27. H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003). [CrossRef]
  28. J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003). [CrossRef]
  29. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002). [CrossRef]
  30. J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004). [CrossRef]
  31. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003). [CrossRef]
  32. Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011). [CrossRef]
  33. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009). [CrossRef]
  34. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006). [CrossRef]
  35. A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010). [CrossRef]
  36. Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005). [CrossRef]
  37. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964). [CrossRef]
  38. P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996). [CrossRef]
  39. Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001). [CrossRef]
  40. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002). [CrossRef]
  41. P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005). [CrossRef]
  42. A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009). [CrossRef]
  43. T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007). [CrossRef]
  44. J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006). [CrossRef]
  45. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007). [CrossRef]
  46. X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000). [CrossRef]
  47. A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007). [CrossRef]
  48. Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000). [CrossRef]
  49. V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006). [CrossRef]
  50. Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000). [CrossRef]
  51. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004). [CrossRef]
  52. D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006). [CrossRef]
  53. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010). [CrossRef]
  54. Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005). [CrossRef]
  55. R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005). [CrossRef]
  56. L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012). [CrossRef]
  57. J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001). [CrossRef]
  58. X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000). [CrossRef]
  59. J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005). [CrossRef]
  60. H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009). [CrossRef]
  61. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011). [CrossRef]
  62. Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011). [CrossRef]
  63. A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005). [CrossRef]
  64. Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011). [CrossRef]
  65. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001). [CrossRef]
  66. W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007). [CrossRef]
  67. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001). [CrossRef]
  68. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001). [CrossRef]
  69. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005). [CrossRef]
  70. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef]
  71. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004). [CrossRef]
  72. K. J. Huang, S. Y. Yang, and L. M. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429–1434 (2007). [CrossRef]
  73. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006). [CrossRef]
  74. Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303–305 (2008). [CrossRef]
  75. Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010). [CrossRef]
  76. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006). [CrossRef]
  77. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).
  78. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003). [CrossRef]
  79. M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010). [CrossRef]
  80. S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009). [CrossRef]
  81. A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29, 572–574 (2004). [CrossRef]
  82. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008). [CrossRef]
  83. L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006). [CrossRef]
  84. Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
  85. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005). [CrossRef]
  86. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004). [CrossRef]
  87. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006). [CrossRef]
  88. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003). [CrossRef]
  89. B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007). [CrossRef]
  90. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007). [CrossRef]
  91. Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011). [CrossRef]
  92. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]
  93. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004). [CrossRef]
  94. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999). [CrossRef]
  95. J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008). [CrossRef]
  96. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010). [CrossRef]
  97. R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009). [CrossRef]
  98. P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes vs Fabry-Perot modes,” Opt. Express 20, 18707–18716 (2012). [CrossRef]
  99. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003). [CrossRef]
  100. C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008). [CrossRef]
  101. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009). [CrossRef]
  102. J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010). [CrossRef]
  103. J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011). [CrossRef]
  104. J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011). [CrossRef]
  105. C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011). [CrossRef]
  106. L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011). [CrossRef]
  107. C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006). [CrossRef]
  108. L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006). [CrossRef]
  109. Y. N. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008). [CrossRef]
  110. Y. N. Zhang and M. Loncar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34, 902–904 (2009). [CrossRef]
  111. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011). [CrossRef]
  112. A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011). [CrossRef]
  113. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34, 253–255 (2009). [CrossRef]
  114. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011). [CrossRef]
  115. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011). [CrossRef]
  116. M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011). [CrossRef]
  117. J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004). [CrossRef]
  118. B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006). [CrossRef]
  119. J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005). [CrossRef]
  120. K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004). [CrossRef]
  121. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007). [CrossRef]
  122. M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012). [CrossRef]
  123. A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011). [CrossRef]
  124. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009). [CrossRef]
  125. L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009). [CrossRef]
  126. R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012). [CrossRef]
  127. M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003). [CrossRef]
  128. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  129. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008). [CrossRef]
  130. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  131. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008). [CrossRef]
  132. Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009). [CrossRef]
  133. M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006). [CrossRef]
  134. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005). [CrossRef]
  135. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).
  136. J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006). [CrossRef]
  137. R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006). [CrossRef]
  138. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef]
  139. Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005). [CrossRef]
  140. W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006). [CrossRef]
  141. H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007). [CrossRef]
  142. D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009). [CrossRef]
  143. A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010). [CrossRef]
  144. C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005). [CrossRef]
  145. T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006). [CrossRef]
  146. M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008). [CrossRef]
  147. J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008). [CrossRef]
  148. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011). [CrossRef]
  149. K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.
  150. X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009). [CrossRef]
  151. C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012). [CrossRef]
  152. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994). [CrossRef]
  153. S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993). [CrossRef]
  154. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004). [CrossRef]
  155. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006). [CrossRef]
  156. S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005). [CrossRef]
  157. H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007). [CrossRef]
  158. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011). [CrossRef]
  159. J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011). [CrossRef]
  160. P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010). [CrossRef]
  161. X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001). [CrossRef]
  162. L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999). [CrossRef]
  163. Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003). [CrossRef]
  164. Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004). [CrossRef]
  165. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004). [CrossRef]
  166. R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010). [CrossRef]
  167. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef]
  168. L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011). [CrossRef]
  169. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  170. H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007). [CrossRef]
  171. B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010). [CrossRef]
  172. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007). [CrossRef]
  173. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005). [CrossRef]
  174. D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962). [CrossRef]
  175. D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970). [CrossRef]
  176. K. Colbow, “Free-to-bound and bound-to-bound transitions in CdS,” Phys. Rev. 141, 742–749 (1966). [CrossRef]
  177. Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004). [CrossRef]
  178. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005). [CrossRef]
  179. A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005). [CrossRef]
  180. H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007). [CrossRef]
  181. B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007). [CrossRef]
  182. B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011). [CrossRef]
  183. R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011). [CrossRef]
  184. S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012). [CrossRef]
  185. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007). [CrossRef]
  186. A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006). [CrossRef]
  187. Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010). [CrossRef]
  188. C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009). [CrossRef]
  189. A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007). [CrossRef]
  190. A. Capua, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser,” Opt. Express 20, 5987–5992 (2012). [CrossRef]
  191. A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005). [CrossRef]
  192. A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006). [CrossRef]
  193. Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007). [CrossRef]
  194. J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007). [CrossRef]
  195. A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009). [CrossRef]
  196. C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012). [CrossRef]
  197. J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012). [CrossRef]
  198. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008). [CrossRef]
  199. H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012). [CrossRef]
  200. Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012). [CrossRef]
  201. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013). [CrossRef]
  202. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012). [CrossRef]
  203. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009). [CrossRef]
  204. Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009). [CrossRef]
  205. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007). [CrossRef]
  206. V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008). [CrossRef]
  207. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  208. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  209. Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012). [CrossRef]
  210. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  211. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012). [CrossRef]
  212. R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012). [CrossRef]
  213. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011). [CrossRef]
  214. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013). [CrossRef]
  215. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  216. M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36–B44 (2010). [CrossRef]
  217. D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008). [CrossRef]
  218. X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17, 14426–14433 (2009). [CrossRef]
  219. S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008). [CrossRef]
  220. S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011). [CrossRef]
  221. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011). [CrossRef]
  222. X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012). [CrossRef]