OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 4 — Dec. 31, 2013

Three-dimensional display technologies

Jason Geng  »View Author Affiliations

Advances in Optics and Photonics, Vol. 5, Issue 4, pp. 456-535 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5944 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively.With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

© 2013 Optical Society of America

OCIS Codes
(090.2870) Holography : Holographic display
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2040) Instrumentation, measurement, and metrology : Displays

ToC Category:
Imaging Systems

Original Manuscript: May 28, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: September 30, 2013
Published: November 22, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Jason Geng, "Three-dimensional display technologies," Adv. Opt. Photon. 5, 456-535 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Marieb and K. N. Hoehn, Human Anatomy & Physiology (Pearson, 2012).
  2. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  3. B. Blundell and A. Schwarz, Volumetric Three Dimensional Display System (Wiley, 2000).
  4. D. Gabor, “Holography 1948–1971,” Proc. IEEE 60, 655–668 (1972). [CrossRef]
  5. S. Benton and M. Bove, Holographic Imaging (Wiley Interscience, 2008).
  6. E. Lueder, 3D Displays (Wiley, 2012).
  7. R. Hainich and O. Bimber, Displays: Fundamentals & Applications (Peters/CRC Press, 2011).
  8. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1996), pp. 31–42.
  9. W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004). [CrossRef]
  10. N. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005). [CrossRef]
  11. G. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005). [CrossRef]
  12. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996). [CrossRef]
  13. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.
  14. B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2011).
  15. J. Geng, “Volumetric 3D display for radiation therapy planning,” J. Disp. Technol. 4, 437–450 (2008). [CrossRef]
  16. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011). [CrossRef]
  17. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010). [CrossRef]
  18. S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997). [CrossRef]
  19. J. Geng, “Multiview three-dimensional display using single projector,” Displays (submitted).
  20. A. Sullivan, “3 Deep: new displays render images you can almost reach out and touch,” IEEE Spectrum42(4), 30–35 (2005).
  21. D. MacFarlane, “Volumetric three dimensional display,” Appl. Opt. 33, 7453–7457 (1994). [CrossRef]
  22. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006). [CrossRef]
  23. J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010). [CrossRef]
  24. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011). [CrossRef]
  25. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013). [CrossRef]
  26. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011). [CrossRef]
  27. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50, H87–H115 (2011). [CrossRef]
  28. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008). [CrossRef]
  29. E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT, 1991), pp. 3–20.
  30. S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).
  31. E. A. Edirisinghe and J. Jiang, “Stereo imaging, an emerging technology,” in Proceedings of SSGRR, L’Aquila, July31–August 6, 2000.
  32. M. Coltheart, “The persistences of vision,” Phil. Trans. R. Soc. B 290, 57–69 (1980). [CrossRef]
  33. “Persistence of vision,” http://en.wikipedia.org/wiki/Persistence_of_vision .
  34. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006). [CrossRef]
  35. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through headmounted display with a low f-number and large field of view using a free-form prism,” Appl. Opt. 48, 2655–2668 (2009). [CrossRef]
  36. T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.
  37. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996). [CrossRef]
  38. M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 345–350 (1846).
  39. A. Gershun, “The light field,” Moscow, 1936, P. Moon and G. Timoshenko, translators, J. Math. Phys. XVIII, 51–151 (1939).
  40. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.
  41. F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153, 51–52 (1902). [CrossRef]
  42. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008). [CrossRef]
  43. “Nintendo 3DS,” Nintendo, http://www.nintendo.com/3ds/features/ .
  44. T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008). [CrossRef]
  45. D. S. St. John, “Holographic color television record system,” U.S. patent3,813,685 (May28, 1974).
  46. T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.
  47. T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.
  48. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010). [CrossRef]
  49. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012). [CrossRef]
  50. W. Hess, “Stereoscopic picture,” U.S. patent1,128,979 (February16, 1915).
  51. C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996). [CrossRef]
  52. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997). [CrossRef]
  53. NLT, www.nlt-technologies.co.jp/en/ .
  54. A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998). [CrossRef]
  55. Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010). [CrossRef]
  56. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” C. R. Acad. Sci. 146, 446–451 (1908).
  57. H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).
  58. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006). [CrossRef]
  59. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020–6032 (2004). [CrossRef]
  60. H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011). [CrossRef]
  61. O. S. Cossairt, M. Thomas, and R. K. Dorval, “Optical scanning assembly,” U.S. patent7,864,419 (June8, 2004).
  62. E. Goulanian and A. F. Zerrouk, “Apparatus and system for reproducing 3-dimensional images,” U.S. patent7,944,465 (May17, 2011).
  63. L. Bogaert, Y. Meuret, S. Roelandt, A. Avci, H. De Smet, and H. Thienpont, “Demonstration of a multiview projection display using decentered microlens arrays,” Opt. Express 18, 26092–26106 (2010). [CrossRef]
  64. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997). [CrossRef]
  65. M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995). [CrossRef]
  66. T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995). [CrossRef]
  67. E. Schulze, “Synthesis of moving holographic stereograms with high-resolution spatial light modulators,” Proc. SPIE 2406, 124 (1995). [CrossRef]
  68. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013). [CrossRef]
  69. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007). [CrossRef]
  70. Actuality 3D Display, http://actuality-medical.com .
  71. Holografika, www.holografika.com .
  72. T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010). [CrossRef]
  73. G. Favalora and O. Cossairt, “Theta-parallax-only (TPO) displays,” U.S. patent7,364,300 B2 (April24, 2008).
  74. S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012). [CrossRef]
  75. C. H. Krah, “Three-dimensional display system,” U.S. patent7,843,449 (November30, 2010).
  76. Y.-H. Tao, Q.-H. Wang, J. Gu, and W.-X. Zhao, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220–3222 (2009). [CrossRef]
  77. Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20, 20130–20138 (2012). [CrossRef]
  78. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997). [CrossRef]
  79. S. Hentschke, “Autostereoscopic reproduction system for 3-D displays,” U.S. patent7,839,430 (November232010).
  80. N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).
  81. B. Si, “Stereoscopic image display system and method of controlling the same,” U. S. patent8,427,746 B2 (April23, 2013).
  82. http://www.hhi.fraunhofer.de/fields-of-competence/interactive-media-human-factors/products-services/stereoscopic-displays/free2c-desktop-display.html
  83. P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.
  84. S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.
  85. H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.
  86. J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.
  87. J. C. Schultz and M. J. Sykora, “Directional backlight with reduced crosstalk,” U.S. patent application2011/0285927 A1 (May24, 2010).
  88. M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.
  89. M. Minami, “Light source device and display,” U.S. patent application2012/0195072 A1 (August2, 2012).
  90. C. W. Wei and Y. P. Huang, “240  Hz 4-zones sequential backlight,” in SID Symposium Digest (2010), p. 863.
  91. H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012). [CrossRef]
  92. E. A. Downing, “Method and system for three-dimensional display of information based on two photon upconversion,” U.S. patent5,684,621 (November4, 1997).
  93. J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971). [CrossRef]
  94. K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).
  95. E. J. Korevaar and B. Spiver, “Three dimensional display apparatus,” U.S. patent4,881,068 (November14, 1989).
  96. S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007). [CrossRef]
  97. J. Geng, “Volumetric 3D display system with static screen,” NASA Tech Briefs (NASA, 2011), Vol. 35, p. 40, http://www.techbriefs.com/component/content/article/9432 .
  98. H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.
  99. M. Momiuchi and H. Kimura, “Device for forming visible image in air,” U.S. patent7,533,995 (May19, 2009).
  100. D. Wyatt, “A volumetric 3D LED display” (MIT, 2005), http://web.mit.edu/6.111/www/f2005/projects/wyatt_Project_Design_Presentation.pdf .
  101. L. Sadovnik and A. Rizkin, “3D volume visualization display,” U.S. patent5,764,317 (June9, 1998).
  102. A. Sullivan, “Multi-planar volumetric display system and method of operation using multi-planar interlacing,” U.S. patent6,806,849 (October19, 2004).
  103. LightSpace Technologies, www.lightspacetech.com .
  104. EuroLCDs, www.eurolcds.com .
  105. R. S. Gold and J. E. Freeman, “Layered display system and method for volumetric presentation,” U.S. patent5,813,742 (September29, 1998).
  106. M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).
  107. J.-P. Koo and D.-S. Kim, “Volumetric three-dimensional (3D) display system using transparent flexible display panels,” U.S. patent application2007/0009222 A1 (January11, 2007).
  108. M. Hirsch, “Three dimensional display apparatus,” U.S. patent2,967,905 (January13, 1958).
  109. “3D Display from ITT Labs,” Aviation Week, 66–67 (October31, 1960).
  110. L. D. Sher, “Three-dimensional display,” U.S. patent4,130,832 (December19, 1978).
  111. R. Hartwig, “Vorrichtung zur Dreidimensionalen Abbildung in Einem Zylindersymmetrischen Abbildungsraum,” DE patent2622802 C2 (1976).
  112. F. Garcia and R. D. Williams, “Real time three dimensional display with angled rotating screen and method,” U.S. patent5,042,909 (August27, 1991).
  113. M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996). [CrossRef]
  114. J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34, 39–48 (2013). [CrossRef]
  115. J. Geng, “Method and apparatus for high resolution three dimensional display,” U.S. patent6,064,423 (May16, 2000).
  116. J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent7,098,872 (August29, 2006).
  117. J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent6,900,779 (May31, 2005).
  118. J. Geng, “Method and apparatus for generating structural pattern illumination,” U.S. patent6,937,348 (August30, 2005).
  119. R. J. Schipper, “Three-dimensional display,” U.S. patent3,097,261 (July9, 1963).
  120. E. P. Berlin, “Three-dimensional display,” U.S. patent4,160,973 (July10, 1979).
  121. R. D. Ketchpel, “Three-dimensional display cathode ray tube,” U.S. patent3,140,415 (July7, 1964).
  122. B. Blundell and A. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).
  123. B. G. Blundell, “Three dimensional display system,” U.S. patent5,703,606 (December30, 1997).
  124. R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011). [CrossRef]
  125. Y.-P. Huang, “Auto-stereoscopic 3D display and its future developments,” http://www.cdr.ust.hk/Webinar (SID, 2012).
  126. D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007). [CrossRef]
  127. D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013). [CrossRef]
  128. M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.
  129. Zebra Imaging, www.zebraimaging.com .
  130. M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, New York, June21–23, 2011.
  131. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005). [CrossRef]
  132. QinetiQ, www.qinetiq.com .
  133. SeeReal, http://www.seereal.com/ .
  134. S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.
  135. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010). [CrossRef]
  136. IMEC Holographic Display, http://www.imec.be/ScientificReport/SR2010/2010/1159126.html .
  137. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010). [CrossRef]
  138. CNN, www.cnn.com .
  139. Holographic screen, http://en.wikipedia.org/wiki/Holographic_screen .
  140. Vermeer, http://research.microsoft.com/en-us/projects/vermeer/ .
  141. Musion Eyeliner, http://www.eyeliner3d.com/ .
  142. ViZoo, http://www.vizoo.com .
  143. P. Simonson and M. Corell, “Method and arrangement for projecting images,” U.S. patent7,184,209 (February27, 2007).
  144. Musion Systems Ltd, http://www.musion.co.uk .
  145. “Pepper’s ghost,” http://en.wikipedia.org/wiki/Pepper%27s_ghost .
  146. FogScreen, http://www.fogscreen.com/ .
  147. UK FogScreen, http://ukfogscreen.com/ .
  148. A. Kataoka and Y. Kasahara, “Method and apparatus for a fog screen and image-forming method using the same,” U.S. patent5,270,752 (December14, 1993).
  149. H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).
  150. C. D. Dyner, “Method and system for free-space imaging display and interface,” U.S. patent6,857,746 (February22, 2005).
  151. S. H. Pevnick, “Water supply method and apparatus for a fountain,” U.S. patent6,557,777 (May6, 2003).
  152. Graphical Waterfalls, http://pevnickdesign.com/ .
  153. P. Richards, “MIT architects design building with digital water walls,” MIT News Office (July12, 2007).
  154. O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.
  155. N. Holliman, Three-Dimensional Display Systems (Taylor and Francis, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited