OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 1 — Jan. 30, 2009

Optical fiber nanowires and microwires: fabrication and applications

Gilberto Brambilla, Fei Xu, Peter Horak, Yongmin Jung, Fumihito Koizumi, Neil P. Sessions, Elena Koukharenko, Xian Feng, Ganapathy S. Murugan, James S. Wilkinson, and David J. Richardson  »View Author Affiliations

Advances in Optics and Photonics, Vol. 1, Issue 1, pp. 107-161 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (3047 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microwires and nanowires have been manufactured by using a wide range of bottom-up techniques such as chemical or physical vapor deposition and top-down processes such as fiber drawing. Among these techniques, the manufacture of wires from optical fibers provides the longest, most uniform and robust nanowires. Critically, the small surface roughness and the high-homogeneity associated with optical fiber nanowires (OFNs) provide low optical loss and allow the use of nanowires for a wide range of new applications for communications, sensing, lasers, biology, and chemistry. OFNs offer a number of outstanding optical and mechanical properties, including (1) large evanescent fields, (2) high-nonlinearity, (3) strong confinement, and (4) low-loss interconnection to other optical fibers and fiberized components. OFNs are fabricated by adiabatically stretching optical fibers and thus preserve the original optical fiber dimensions at their input and output, allowing ready splicing to standard fibers. A review of the manufacture of OFNs is presented, with a particular emphasis on their applications. Three different groups of applications have been envisaged: (1) devices based on the strong confinement or nonlinearity, (2) applications exploiting the large evanescent field, and (3) devices involving the taper transition regions. The first group includes supercontinuum generators, a range of nonlinear optical devices, and optical trapping. The second group comprises knot, loop, and coil resonators and their applications, sensing and particle propulsion by optical pressure. Finally, mode filtering and mode conversion represent applications based on the taper transition regions. Among these groups of applications, devices exploiting the OFN-based resonators are possibly the most interesting; because of the large evanescent field, when OFNs are coiled onto themselves the mode propagating in the wire interferes with itself to give a resonator. In contrast with the majority of high-Q resonators manufactured by other means, the OFN microresonator does not have major issues with input–output coupling and presents a completely integrated fiberized solution. OFNs can be used to manufacture loop and coil resonators with Q factors that, although still far from the predicted value of 10 9 , are well in excess of 10 5 . The input–output pigtails play a major role in shaping the resonator response and can be used to maximize the Q factor over a wide range of coupling parameters. Finally, temporal stability and robustness issues are discussed, and a solution to optical degradation issues is presented.

© 2009 Optical Society of America

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 21, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 17, 2008
Published: January 30, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Gilberto Brambilla, Fei Xu, Peter Horak, Yongmin Jung, Fumihito Koizumi, Neil P. Sessions, Elena Koukharenko, Xian Feng, Ganapathy S. Murugan, James S. Wilkinson, and David J. Richardson, "Optical fiber nanowires and microwires: fabrication and applications," Adv. Opt. Photon. 1, 107-161 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Appell, “Nanotechnology: wired for success,” Nature 419, 553–555 (2002). [CrossRef] [PubMed]
  2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991). [CrossRef]
  3. Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000). [CrossRef]
  4. P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002). [CrossRef]
  5. M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001). [CrossRef]
  6. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).
  7. Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997). [CrossRef]
  8. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992). [CrossRef]
  9. C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000). [CrossRef]
  10. J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001). [CrossRef] [PubMed]
  11. L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003). [CrossRef]
  12. Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000). [CrossRef]
  13. Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001). [CrossRef]
  14. M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999). [CrossRef]
  15. Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).
  16. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001). [CrossRef] [PubMed]
  17. Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001). [CrossRef] [PubMed]
  18. C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001). [CrossRef]
  19. K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998). [CrossRef] [PubMed]
  20. X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008). [CrossRef] [PubMed]
  21. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999). [CrossRef] [PubMed]
  22. A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998). [CrossRef] [PubMed]
  23. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997). [CrossRef]
  24. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997). [CrossRef]
  25. Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000). [CrossRef]
  26. Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002). [CrossRef]
  27. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  28. G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004). [CrossRef] [PubMed]
  29. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [PubMed]
  30. A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005). [CrossRef]
  31. G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006). [CrossRef]
  32. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006). [CrossRef] [PubMed]
  33. J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999). [CrossRef]
  34. F. Bilodeau, K. O. Hill, D. C. Johnson, S. Faucher, “Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,” Opt. Lett. 12, 634–636 (1987). [CrossRef] [PubMed]
  35. B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997). [CrossRef]
  36. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998). [CrossRef]
  37. H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998). [CrossRef]
  38. M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000). [CrossRef]
  39. Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000). [CrossRef]
  40. J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001). [CrossRef]
  41. Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002). [CrossRef] [PubMed]
  42. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003). [CrossRef]
  43. D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969). [CrossRef]
  44. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997). [CrossRef]
  45. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [PubMed]
  46. M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005). [CrossRef] [PubMed]
  47. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005). [CrossRef]
  48. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008). [CrossRef] [PubMed]
  49. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004). [CrossRef]
  50. F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004). [CrossRef]
  51. G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007). [CrossRef] [PubMed]
  52. G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008). [CrossRef]
  53. J. Villatoro, D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005). [CrossRef] [PubMed]
  54. J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005). [CrossRef] [PubMed]
  55. F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007). [CrossRef] [PubMed]
  56. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952–11958 (2007). [CrossRef] [PubMed]
  57. F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008). [CrossRef]
  58. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008). [CrossRef] [PubMed]
  59. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004). [CrossRef] [PubMed]
  60. M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004). [CrossRef] [PubMed]
  61. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  62. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006). [CrossRef]
  63. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006). [CrossRef]
  64. F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007). [CrossRef] [PubMed]
  65. F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007). [CrossRef]
  66. F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007). [CrossRef] [PubMed]
  67. L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005). [CrossRef] [PubMed]
  68. L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005). [CrossRef]
  69. G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005). [CrossRef]
  70. M. Sumetsky, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007). [CrossRef] [PubMed]
  71. J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987). [CrossRef]
  72. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997). [CrossRef]
  73. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000). [CrossRef] [PubMed]
  74. M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005). [CrossRef]
  75. M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997). [CrossRef]
  76. D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003). [CrossRef]
  77. C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989). [CrossRef]
  78. G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007). [CrossRef]
  79. M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.
  80. F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008). [CrossRef]
  81. “Optical coating materials,” http://eng.sscpcorp.com/pages/SO00057_02.asp.
  82. “DuPont Teflon AF fluoropolymer resins: Teflon® AF,”http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/
  83. G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008). [CrossRef] [PubMed]
  84. N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008). [CrossRef] [PubMed]
  85. M. Sumetsky, “Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26, 21–27 (2008). [CrossRef]
  86. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004). [CrossRef]
  87. F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007). [CrossRef]
  88. P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 6, 433–458 (1901). [CrossRef]
  89. S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992). [CrossRef]
  90. S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996). [CrossRef] [PubMed]
  91. A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  92. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  93. L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000). [CrossRef]
  94. T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000). [CrossRef]
  95. K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004). [CrossRef]
  96. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005). [CrossRef] [PubMed]
  97. C. Y. Chao, L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006). [CrossRef]
  98. L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008). [CrossRef] [PubMed]
  99. F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008). [CrossRef] [PubMed]
  100. P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273–1275 (2005). [CrossRef] [PubMed]
  101. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007). [CrossRef] [PubMed]
  102. M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005). [CrossRef]
  103. C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006). [CrossRef]
  104. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  105. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006). [CrossRef]
  106. I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007). [CrossRef]
  107. X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008). [CrossRef] [PubMed]
  108. M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007). [CrossRef] [PubMed]
  109. P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006). [CrossRef] [PubMed]
  110. D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).
  111. I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef] [PubMed]
  112. G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939). [CrossRef]
  113. J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).
  114. J. E. Tyler, R. C. Smith, J. W. H. Wilson, “Predicted optical properties for clear natural water,” J. Opt. Soc. Am. 62, 83 (1972). [CrossRef]
  115. G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  116. R. Altkorn, I. Koev, R. P. VanDuyne, M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992–8998 (1997). [CrossRef]
  117. P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998). [CrossRef]
  118. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef] [PubMed]
  119. I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003). [CrossRef]
  120. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005). [CrossRef]
  121. G. R. Quigley, R. D. Harris, J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999). [CrossRef]
  122. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005). [CrossRef]
  123. S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004). [CrossRef] [PubMed]
  124. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  125. C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004). [CrossRef]
  126. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007). [CrossRef] [PubMed]
  127. R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  128. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  129. T. A. Birks, W. J. Wadsworth, P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  130. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. M. Man, P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]
  131. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  132. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippenet, T. Hasegawa, T. Nagashima, N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 mm,” Opt. Express 12, 5697–5703 (2004). [CrossRef] [PubMed]
  133. A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003). [CrossRef]
  134. G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006). [CrossRef]
  135. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007). [CrossRef]
  136. G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005). [CrossRef]
  137. K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002). [CrossRef]
  138. A. W. Snyder, J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).
  139. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  140. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  141. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  142. P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).
  143. E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995). [CrossRef]
  144. K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001). [CrossRef]
  145. Z. H. Hu, J. Wang, J. W. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123–4128 (2004). [CrossRef] [PubMed]
  146. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997). [CrossRef] [PubMed]
  147. Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008). [CrossRef] [PubMed]
  148. L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef] [PubMed]
  149. S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005). [CrossRef]
  150. D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006). [CrossRef]
  151. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  152. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).
  153. R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2817 KB)     
» Media 2: AVI (3997 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited