OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 1 — Jan. 30, 2009

Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires

R. M. Osgood, Jr., N. C. Panoiu, J. I. Dadap, Xiaoping Liu, Xiaogang Chen, I-Wei Hsieh, E. Dulkeith, W. M.J. Green, and Y. A. Vlasov  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 1, pp. 162-235 (2009)
http://dx.doi.org/10.1364/AOP.1.000162


View Full Text Article

Enhanced HTML    Acrobat PDF (2604 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear optics of Si photonic wires is discussed. The distinctive features of these waveguides are that they have extremely large third-order susceptibility χ ( 3 ) and dispersive properties. The strong dispersion and large third-order nonlinearity in Si photonic wires cause the linear and nonlinear optical physics in these guides to be intimately linked. By carefully choosing the waveguide dimensions, both linear and nonlinear optical properties of Si wires can be engineered. We review the fundamental optical physics and emerging applications for these Si wires. In many cases, the relatively low threshold powers for nonlinear optical effects in these wires make them potential candidates for functional on-chip nonlinear optical devices of just a few millimeters in length; conversely, the absence of nonlinear optical impairment is important for the use of Si wires in on-chip interconnects. In addition, the characteristic length scales of linear and nonlinear optical effects in Si wires are markedly different from those in commonly used optical guiding systems, such as optical fibers or photonic crystal fibers, and therefore guiding structures based on Si wires represent ideal optical media for investigating new and intriguing physical phenomena.

© 2009 Optical Society of America

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 7, 2008
Revised Manuscript: November 24, 2008
Manuscript Accepted: November 25, 2008
Published: January 30, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
R. M. Osgood, N. C. Panoiu, J. I. Dadap, Xiaoping Liu, Xiaogang Chen, I-Wei Hsieh, E. Dulkeith, W. M.J. Green, and Y. A. Vlasov, "Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires," Adv. Opt. Photon. 1, 162-235 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-1-162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968). [CrossRef]
  2. R. M. Roth, N.-C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14, 2921–2931 (2006). [CrossRef] [PubMed]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  4. X. Li, K. Terabe, H. Hatano, K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. Part 1 44, L1550–L1552 (2005). [CrossRef]
  5. A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, "Enhanced nonlinear optical conversion from a periodically nanostructured metal film," Opt. Lett. 28, 423–425 (2003). [CrossRef] [PubMed]
  6. M. Airola, Y. Liu, S. J. Blair, “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A 7, S118–S123 (2005). [CrossRef]
  7. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006). [CrossRef]
  8. W. Fan, S. Zhang, K. J. Malloy, R. J. Brueck, N.-C. Panoiu, R. M. Osgood, “Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array,” Opt. Express 14, 9570–9575 (2006). [CrossRef] [PubMed]
  9. R. A. Soref, J. P. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett. 21, 953–954 (1985). [CrossRef]
  10. R. A. Soref, B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987). [CrossRef]
  11. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef] [PubMed]
  12. Q. Xu, B. Shmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]
  13. V. R. Almeida, C. A. Barrios, R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  14. C. A. Barrios, V. R. de Almeida, M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098 (2003). [CrossRef]
  15. G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptic micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995). [CrossRef]
  16. R. L. Espinola, M.-C. Tsai, J. T. Yardley, R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003). [CrossRef]
  17. M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004). [CrossRef]
  18. M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004). [CrossRef]
  19. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef] [PubMed]
  20. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005). [CrossRef]
  21. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993). [CrossRef]
  22. B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” in Progress in Optics, Volume XXXII, E. Wolf, ed. (Elsevier, 1993), pp. 3–59.
  23. G. T. Reed, A. P. Knights, Silicon Photonics: an Introduction (Wiley, 2004). [CrossRef]
  24. L. Pavesi, D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).
  25. M. Paniccia, M. Morse, M. Salib, “Integrated photonics,” Top. Appl. Phys. 94, 51–88 (2004). [CrossRef]
  26. L. C. Kimerling, L. Dal Negro, S. Saini, Y. Yi, D. Ahn, S. Akiyama, D. Cannon, J. Liu, J. G. Sandland, D. Sparacin, J. Michel, K. Wada, M. R. Watts, “Monolithic silicon microphotonics,” Top. Appl. Phys. 94, 89–120 (2004). [CrossRef]
  27. B. Jalali, R. Claps, D. Dimitropoulos, V. Raghunathan, “Light generation, amplification, and wavelength conversion via stimulated Raman scattering in silicon microstructures,” Top. Appl. Phys. 94, 199–238 (2004). [CrossRef]
  28. R. J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, M. Asghari, “Silicon based waveguides,” Top. Appl. Phys. 94, 269–294 (2004). [CrossRef]
  29. S. Janz, “Silicon-based waveguide technology for wavelength division multiplexing,” Top. Appl. Phys. 94, 323–360 (2004). [CrossRef]
  30. A. Irace, G. Breglio, M. Iodice, A. Cutolo, “Light modulation with silicon devices,” Top. Appl. Phys. 94, 361–391 (2004). [CrossRef]
  31. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005). [CrossRef]
  32. L. Pavesi, G. Guillot, Optical Interconnects—the Silicon Approach (Springer-Verlag, 2006). [CrossRef]
  33. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  34. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  35. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. Part 1 45, 6589–6602 (2006). [CrossRef]
  36. R. Dekker, N. Usechak, M. Först, A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007). [CrossRef]
  37. J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008). [CrossRef] [PubMed]
  38. M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008). [CrossRef] [PubMed]
  39. Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef] [PubMed]
  40. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002). [PubMed]
  41. J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Spontaneous Raman scattering in ultrasmall silicon waveguides,” Opt. Lett. 29, 2755–2757 (2004). [CrossRef] [PubMed]
  42. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003). [CrossRef] [PubMed]
  43. R. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004). [CrossRef] [PubMed]
  44. T. K. Liang, H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004). [CrossRef]
  45. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004). [CrossRef] [PubMed]
  46. Ö. Boyraz, B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Electron. Express 1, 429–434 (2004). [CrossRef]
  47. Q. Xu, V. R. Almeida, M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide,” Opt. Lett. 30, 35–37 (2005). [CrossRef] [PubMed]
  48. R. Claps, V. Raghunathan, Ö. Boyraz, P. Koonath, D. Dimitropoulos, B. Jalali, “Raman amplification and lasing in SiGe waveguides,” Opt. Express 13, 2459–2466 (2005). [CrossRef] [PubMed]
  49. S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005). [CrossRef] [PubMed]
  50. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006). [CrossRef] [PubMed]
  51. Ö. Boyraz, B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef] [PubMed]
  52. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005). [CrossRef] [PubMed]
  53. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef] [PubMed]
  54. Ö. Boyraz, B. Jalali, “Demonstration of a directly modulated silicon Raman laser,” Opt. Express 13, 796–800 (2005). [CrossRef] [PubMed]
  55. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006). [CrossRef] [PubMed]
  56. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultra-low threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004). [CrossRef]
  57. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs–silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef] [PubMed]
  58. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003). [CrossRef] [PubMed]
  59. V. Raghunathan, R. Claps, D. Dimitropoulos, B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005). [CrossRef]
  60. R. Espinola, J. Dadap, R. Osgood, S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005). [CrossRef] [PubMed]
  61. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, S.-i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef] [PubMed]
  62. Q. Xu, V. R. Almeida, M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005). [CrossRef] [PubMed]
  63. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, O. Cohen, “Demonstration of wavelength conversion at 40 Gb∕s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006). [CrossRef] [PubMed]
  64. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broadband optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  65. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006). [CrossRef]
  66. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef] [PubMed]
  67. H. K. Tsang, C. S. Wong, T. K. Lang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  68. G. W. Rieger, K. S. Virk, J. F. Young, “Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004). [CrossRef]
  69. Ö. Boyraz, T. Indukuri, B. Jalali, “Self-phase modulation-induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004). [CrossRef] [PubMed]
  70. A. Cowan, G. Rieger, J. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004). [CrossRef] [PubMed]
  71. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys., Part 1 44, 6541–6545 (2005). [CrossRef]
  72. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef] [PubMed]
  73. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006). [CrossRef] [PubMed]
  74. Ö. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef] [PubMed]
  75. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13, 7298–7303 (2005). [CrossRef] [PubMed]
  76. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006). [CrossRef] [PubMed]
  77. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146 (2007). [CrossRef] [PubMed]
  78. C. Manolatou, M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006). [CrossRef]
  79. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171–174 (2006). [CrossRef]
  80. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007). [CrossRef] [PubMed]
  81. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).
  82. R. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, “Ultra-compact corner-mirrors and T-branches in silicon-on-insulator.” IEEE Photon. Technol. Lett. 14, 65–67 (2002). [CrossRef]
  83. S. McNab, N. Moll, Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef] [PubMed]
  84. Y. Vlasov, S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef] [PubMed]
  85. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002). [CrossRef]
  86. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003). [CrossRef] [PubMed]
  87. F. Xia, L. Sekaric, Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  88. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006). [CrossRef]
  89. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers,” Nature 424, 511–515 (2003). [CrossRef] [PubMed]
  90. M. Foster, K. Moll, A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004). [CrossRef] [PubMed]
  91. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005). [CrossRef]
  92. X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006). [CrossRef]
  93. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef] [PubMed]
  94. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006). [CrossRef] [PubMed]
  95. L. Yin, Q. Lin, G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295–1297 (2006). [CrossRef] [PubMed]
  96. X. Chen, N. Panoiu, I. Hsieh, J. I. Dadap, R. M. Osgood, “Third-order dispersion and ultrafast pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006). [CrossRef]
  97. X. Liu, W. M. J. Green, X. Chen, I-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008). [CrossRef] [PubMed]
  98. W. M. J. Green, X. Liu, X. Chen, S. Assefa, R. M. Osgood, Y. A. Vlasov, “Dispersion engineering of silicon nanophotonic wires using a thin film cladding,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuDD5.
  99. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  100. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007). [CrossRef] [PubMed]
  101. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  102. I. P. Kaminow, T. L. Koch, Optical Fiber Telecommunications IIIA (Academic, 1997).
  103. J. Lou, L. Tong, Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14, 6993–6998 (2006). [CrossRef] [PubMed]
  104. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  105. J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). [CrossRef] [PubMed]
  106. K. K. Tsia, S. Fathpour, B. Jalali, “Electrical control of parametric processes in silicon waveguides,” Opt. Express 16, 9838–9843 (2008). [CrossRef] [PubMed]
  107. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007). [CrossRef]
  108. M. Dinu, F. Quochi, H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954 (2003). [CrossRef]
  109. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003). [CrossRef]
  110. A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  111. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  112. H. Garcia, R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. B 39, 2737–2746 (2006). [CrossRef]
  113. P. A. Temple, C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7, 3685–3697 (1973). [CrossRef]
  114. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965). [CrossRef]
  115. M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4464 (1974). [CrossRef]
  116. M. Cardona, “Resonance phenomena,” in Light Scattering in Solids II, Vol. 50 of Topics in Applied Physics, M. Cardona and G. Guntherodt, eds. (Springer, 1982), Chap. 2. [CrossRef]
  117. H. Vogt, “Coherent and hyper-Raman techniques,” in Light Scattering in Solids II, Vol. 50 of Topics in Applied Physics, M. Cardona and G. Guntherodt, eds. (Springer, 1982), Chap. 4. [CrossRef]
  118. R. Loudon, “The Raman effect in crystals,” Adv. Phys. 50, 813–864 (2001). [CrossRef]
  119. P. E. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005). [CrossRef] [PubMed]
  120. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  121. M. J. Adams, S. Ritchie, M. J. Robertson, “Optimum overlap of electric and optical fields in semiconductor waveguide devices,” Appl. Phys. Lett. 48, 820–822 (1986). [CrossRef]
  122. S. R. Giguere, L. Friedman, R. A. Soref, J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990). [CrossRef]
  123. T. K. Liang, H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]
  124. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004). [CrossRef] [PubMed]
  125. C. Koos, L. Jacome, C. Poulton, J. Leuthold, W. Freude, “Nonlinear silicon-on-insulator waveguides for all optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]
  126. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986). [CrossRef] [PubMed]
  127. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, “Soliton at the zero-group-dispersion wavelength of a single mode fiber,” Opt. Lett. 12, 628–630 (1987). [CrossRef] [PubMed]
  128. P. K. A. Wai, H. H. Chen, Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990). [CrossRef] [PubMed]
  129. N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]
  130. J. Santhanam, G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003). [CrossRef]
  131. L. A. Ostrovskii, “Propagation of wave packets and space-time self-focusing in a nonlinear medium,” Sov. Phys. JETP 24, 797 (1967).
  132. D. Grischkowsky, E. Courtens, J. A. Armstrong, “Observation of self-steepening of optical pulses with possible shock formation,” Phys. Rev. Lett. 31, 422–425 (1973). [CrossRef]
  133. N. Tzoar, M. Jain, “Self-phase modulation in long-geometry optical-waveguides,” Phys. Rev. A 23, 1266–1270 (1981). [CrossRef]
  134. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  135. N. C. Panoiu, X. Liu, R. M. Osgood, “Self-steepening of ultrashort pulses in Si photonic nanowires” to be submitted to Opt. Lett.
  136. B. Kibler, J. M. Dudley, S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005). [CrossRef]
  137. N. C. Panoiu, X. Chen, R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006). [CrossRef] [PubMed]
  138. Y. Liu, H. K. Tsang, “Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides,” Opt. Lett. 31, 1714–1716 (2006). [CrossRef] [PubMed]
  139. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005). [CrossRef] [PubMed]
  140. M. Krause, H. Renner, S. Fathpour, B. Jalali, E. Brinkmeyer, “Gain enhancement in cladding-pumped silicon raman amplifiers,” IEEE J. Quantum Electron. 44, 692–704 (2008). [CrossRef]
  141. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, P. M. Fauchet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007). [CrossRef] [PubMed]
  142. L. Yin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef] [PubMed]
  143. L. Ding, C. Benton, A. V. Gorbach, L. Ding, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008). [CrossRef] [PubMed]
  144. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion,” Opt. Lett. 18, 54–56 (1993). [CrossRef] [PubMed]
  145. P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating ultrafast optical pulses,” Appl. Phys. Lett. 52, 1939–1941 (1988). [CrossRef]
  146. K. W. DeLong, K. B. Rochford, G. I. Stegeman, “Effect of two-photon absorption on all-optical guided wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989). [CrossRef]
  147. J. Hansryd, A. Andrekson, M. Westlund, J. Li, P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  148. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef] [PubMed]
  149. T. V. Andersen, K. M. Hilligsoe, C. K. Nielsen, J. Thogersen, K. P. Hansen, S. R. Keidling, J. J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12, 4113–4122 (2004). [CrossRef] [PubMed]
  150. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, O. Cohen, “High efficiency wavelength conversion of 10 Gb∕s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006). [CrossRef] [PubMed]
  151. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987). [CrossRef] [PubMed]
  152. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef] [PubMed]
  153. W. Huang, J. Hong, “A coupled-mode analysis of modulation instability in optical fibers,” J. Lightwave Technol. 10, 156–162 (1992). [CrossRef]
  154. M. Yu, C. J. Mckinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E 48, 2178–2186 (1993). [CrossRef]
  155. D. Schadt, B. Jaskorzynska, “Generation of short pulses from CW light by influence of crossphase modulation (CPM) in optical fibres,” Electron. Lett. 23, 1090–1091 (1987). [CrossRef]
  156. A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulational instability in optical fibers,” Opt. Lett. 13, 901–903 (1988). [CrossRef] [PubMed]
  157. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004). [CrossRef] [PubMed]
  158. A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203904 (2001). [CrossRef] [PubMed]
  159. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005). [CrossRef]
  160. Y. S. Kivshar, B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–916 (1989). [CrossRef]
  161. Y. Kodama, A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987). [CrossRef]
  162. A. Demircan, U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007). [CrossRef]
  163. H. A. Haus, “Short pulse lasers,” in Compact Sources of Ultrashort Pulses, I. N. Duling, ed. (Cambridge U. Press, 1995). [CrossRef]
  164. E.-K. Tien, N. S. Yuksek, F. Qian, Ö. Boyraz, “Pulse compression and modelocking by using TPA in silicon waveguides,” Opt. Express 15, 6500–6506 (2007). [CrossRef] [PubMed]
  165. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008). [CrossRef]
  166. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006). [CrossRef]
  167. H. Simos, A. Bogris, D. Syvridis, “Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 22, 595–597 (2004).
  168. J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 17, 423–425 (2005). [CrossRef]
  169. R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, T. E. Murphy, “Polarization-insensitive optical clock recovery at 80 Gb∕s using a silicon photodiode” IEEE Photon. Technol. Lett. 17, 1968–1970 (2005). [CrossRef]
  170. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  171. A. Shacham, K. Bergman, L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the IEEE International Symposium on Networks-on-Chip (NOCS ’07) (IEEE, 2007), paper 2.1.
  172. B. G. Lee, X. G. Chen, A. Biberman, X. P. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks” IEEE Photon. Technol. Lett. 20, 398–400 (2008). [CrossRef]
  173. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited