OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 1 — Jan. 1, 2009

Understanding leaky modes: slab waveguide revisited

Jonathan Hu and Curtis R. Menyuk  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 1, pp. 58-106 (2009)
http://dx.doi.org/10.1364/AOP.1.000058


View Full Text Article

Enhanced HTML    Acrobat PDF (2745 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computational methods for determining the complex propagation constants of leaky waveguide modes have become so powerful and so readily available that it is possible to use these methods with little understanding of what they are calculating. We compare different computational methods for calculating the propagation constants of the leaky modes, focusing on the relatively simple context of a W-type slab waveguide. In a lossless medium with infinite transverse extent, a direct determination of the leaky mode by using mode matching is compared with complete mode decomposition. The mode matching method is analogous to the multipole method in two dimensions. We then compare these results with a simple finite-difference scheme in a transverse region with absorbing boundaries that is analogous to finite-difference or finite-element methods in two dimensions. While the physical meaning of the leaky modes in these different solution methods is different, they all predict a nearly identical evolution for an initial, nearly confined mode profile over a limited spatial region and a limited distance. Finally, we demonstrate that a waveguide that uses bandgap confinement with a central defect produces analogous results.

© 2009 Optical Society of America

History
Original Manuscript: July 25, 2008
Revised Manuscript: November 5, 2008
Manuscript Accepted: November 6, 2008
Published: January 29, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Jonathan Hu and Curtis R. Menyuk, "Understanding leaky modes: slab waveguide revisited," Adv. Opt. Photon. 1, 58-106 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-1-58


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J. 48, 2059–2069 (1969). [CrossRef]
  2. E. A. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969). [CrossRef]
  3. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–198 (1961). [CrossRef]
  4. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971). [CrossRef] [PubMed]
  5. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  6. K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001). [CrossRef]
  7. M. Koshiba, Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000). [CrossRef]
  8. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press, 2001).
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  10. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  11. D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28, 459–465 (1992). [CrossRef]
  12. S. Johnson, J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  13. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, A. Tchelnokov, Photonic Crystals: towards Nanoscale Photonic Devices (Springer, 2005).
  14. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  15. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).
  16. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).
  17. S. Barone, “Leaky wave contributions to the field of a line source above a dielectric slab,” Report R-532-546, PIB-462 (Microwave Research Institute, Polytechnic Institute of Brooklyn,Nov. 26, 1956).
  18. S. Barone, A. Hessel, “Leaky wave contributions to the field of a line source above a dielectric slab—part II,” Report R-698-58, PIB-626 (Microwave Research Institute, Polytechnic Institute of Brooklyn, Dec. 1958).
  19. N. Marcuvitz, “On field representations in terms of leaky modes or eigenmodes,” IRE Trans. Antennas Propag. 4, 192–194 (1956). [CrossRef]
  20. T. Tamir, A. A. Oliner, “Guided complex waves. Part 1: fields at an interface,” Proc. IEEE 110, 310–324 (1963).
  21. T. Tamir, A. A. Oliner, “Guided complex waves. Part 2: relation to radiation pattern,” Proc. IEEE 110, 325–334 (1963).
  22. C. W. Hsue, T. Tamir, “Evolution of transverse-electric surface and leaky waves guided by an asymmetric layer configuration,” J. Opt. Soc. Am. A 1, 923–931 (1984). [CrossRef]
  23. T. Tamir, F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron. 22, 544–551 (1986). [CrossRef]
  24. S. T. Peng, A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. I. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981). [CrossRef]
  25. A. A. Oliner, S. T. Peng, T. I. Hsu, A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides. II. New physical effects,” IEEE Trans. Microwave Theory Tech. MTT-29, 855–869 (1981). [CrossRef]
  26. E. S. Cassedy, M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IRE Trans. Microwave Theory Tech. 9, 243–247 (1961). [CrossRef]
  27. D. B. Hall, C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44, 2271–2274 (1973). [CrossRef]
  28. H. Haus, D. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22, 310–318 (1986). [CrossRef]
  29. Y. Suematsu, K. Furuya, “Quasi-guided modes and related radiation losses in optical dielectric waveguides with external higher index surroundings,” IEEE Trans. Microwave Theory Tech. 23, 170–175 (1975). [CrossRef]
  30. S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974). [CrossRef]
  31. S. Kawakami, S. Nishida, “Perturbation theory of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 11, 130–138 (1975). [CrossRef]
  32. J. Arnbak, “Leaky waves on a dielectric rod,” Electron. Lett. 5, 41–42 (1969). [CrossRef]
  33. J. R. James, “Leaky waves on a dielectric rod,” Electron. Lett. 5, 252–254 (1969). [CrossRef]
  34. J. Burke, “Propagation constants of resonant waves on homogeneous, isotropic slab waveguides,” Appl. Opt. 9, 2444–2452 (1970). [CrossRef] [PubMed]
  35. V. V. Shevchenko, “On the behavior of wave numbers beyond the critical value for waves in dielectric waveguides (media with losses),” Radiophys. Quantum Electron. 15, 194–200 (1972). [CrossRef]
  36. A. W. Snyder, D. J. Mitchell, “Ray attenuation in lossless dielectric structures,” J. Opt. Soc. Am. 64, 956–963 (1974). [CrossRef]
  37. A. W. Snyder, D. J. Mitchell, “Leaky mode analysis of circular optical waveguides,” Opto-electronics (London) 6, 287–296 (1974). [CrossRef]
  38. M. Maeda, S. Yamada, “Leaky modes on W-fibers: mode structure and attenuation,” Appl. Opt. 16, 2198–2203 (1977). [CrossRef] [PubMed]
  39. A. W. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys. (N.Y.) 4, 273–298 (1974). [CrossRef]
  40. A. W. Snyder, D. J. Mitchell, “Leaky rays on circular optical fibers,” J. Opt. Soc. Am. 64, 599–607 (1974). [CrossRef]
  41. A. W. Snyder, D. J. Mitchell, C. Pask, “Failure of geometric optics for analysis of circular optical fibers,” J. Opt. Soc. Am. 64, 608–614 (1974). [CrossRef]
  42. J. D. Love, C. Winkler, “Attenuation and tunneling coefficients for leaky rays in multilayered optical waveguides,” J. Opt. Soc. Am. 67, 1627–1633 (1977). [CrossRef]
  43. J. T. Chilwell, I. J. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984). [CrossRef]
  44. L. Torner, F. Canal, J. Hernandez-Marco, “Leaky modes in multilayer uniaxial optical waveguides,” Appl. Opt. 29, 2805–2814 (1990). [CrossRef] [PubMed]
  45. J. Petraček, K. Singh, “Determination of leaky modes in planar multilayer waveguides,” IEEE Photon. Technol. Lett. 14, 810–812 (2002). [CrossRef]
  46. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, Foundations Of Photonic Crystal Fibres (Imperial College Press, 2005).
  47. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), Chap. 2.
  48. E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1984).
  49. W. Klaus, W. R. Leeb, “Transient fields in the input coupling region of optical single-mode waveguides,” Opt. Express 15, 11808–11826 (2007). [CrossRef] [PubMed]
  50. S.-L. Lee, Y. Chung, L. A. Coldren, N. Dagli, “On leaky mode approximations for modal expansion in multilayer open waveguides,” IEEE J. Quantum Electron. 31, 1790–1802 (1995). [CrossRef]
  51. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).
  52. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton U. Press, 2008).
  53. K. Hoffman, R. Kunze, Linear Algebra, 2nd ed. (Prentice Hall, 1971), Chap. 8.5.
  54. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), Chap. 4.6.
  55. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981), Chap. 2.6.
  56. R. V. Churchill, J. W. Brown, Complex Variables and Applications, 5th ed. (McGraw-Hill, 1990), Chap. 2.
  57. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972), Chap. 8.4.
  58. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 1999).
  59. P. Yeh, A. Yariv, C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  60. J. Hu, C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15, 339–349 (2007). [CrossRef] [PubMed]
  61. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 1984), Chap. 11.10.
  62. S. Guo, F. Wu, S. Albin, H. Tai, R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12, 3341–3352 (2004). [CrossRef] [PubMed]
  63. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 110–117 (1994). [CrossRef]
  64. A. Taflove, S. C. Hagness, Computational Electrodynamics, 2nd ed (Artech House, 2000).
  65. G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins U. Press, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (571 KB)     
» Media 2: MOV (572 KB)     
» Media 3: MOV (572 KB)     
» Media 4: MOV (5732 KB)     
» Media 5: MOV (577 KB)     
» Media 6: MOV (5780 KB)     
» Media 7: MOV (5137 KB)     
» Media 8: MOV (1066 KB)     
» Media 9: ZIP (55 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited