OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 2 — Apr. 15, 2009

Quantum state discrimination

Stephen M. Barnett and Sarah Croke  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 2, pp. 238-278 (2009)
http://dx.doi.org/10.1364/AOP.1.000238


View Full Text Article

Enhanced HTML    Acrobat PDF (726 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is a fundamental consequence of the superposition principle for quantum states that there must exist nonorthogonal states, that is, states that, although different, have a nonzero overlap. This finite overlap means that there is no way of determining with certainty in which of two such states a given physical system has been prepared. We review the various strategies that have been devised to discriminate optimally between nonorthogonal states and some of the optical experiments that have been performed to realize these.

© 2009 Optical Society of America

ToC Category:
Quantum Optics

History
Original Manuscript: October 10, 2008
Revised Manuscript: December 10, 2008
Manuscript Accepted: December 11, 2008
Published: February 11, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Stephen M. Barnett and Sarah Croke, "Quantum state discrimination," Adv. Opt. Photon. 1, 238-278 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-2-238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, 1976).
  2. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, 1982).
  3. A. S. Holevo, Statistical Structure of Quantum Theory (Springer-Verlag, 2000).
  4. S. M. Barnett, Quantum Information (Oxford U. Press, to be published).
  5. S. J. D. Phoenix, P. D. Townsend, “How to beat the code breakers using quantum mechanics,” Contemp. Phys. 36, 165–195 (1995). [CrossRef]
  6. H.-K. Lo, S. Popescu, and T. Spiller, eds., Introduction to Quantum Computation and Quantum Information (World Scientific, 1998).
  7. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, 2000). [CrossRef]
  8. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  9. S. Loepp, W. K. Wootters, Protecting Information: from Classical Error Correction to Quantum Cryptography (Cambridge U. Press, 2006). [CrossRef]
  10. C. W. Helstrom, “Detection theory and quantum mechanics,” Inf. Control. 10, 254–291 (1967). [CrossRef]
  11. C. W. Helstrom, “Detection theory and quantum mechanics II,” Inf. Control. 13, 156–171 (1968). [CrossRef]
  12. A. S. Holevo, “Statistical decision theory for quantum systems,” J. Multivariate Anal. 3, 337–394 (1973). [CrossRef]
  13. H. P. Yuen, R. S. Kennedy, M. Lax, “Optimum testing of multiple hypotheses in quantum detection theory,” IEEE Trans. Inf. Theory IT-21, 125–134 (1975). [CrossRef]
  14. E. B. Davies, “Information and quantum measurement,” IEEE Trans. Inf. Theory IT-24, 596–599 (1978). [CrossRef]
  15. S. M. Barnett, “Quantum information via novel measurements,” Philos. Trans. R. Soc. London, Ser. A 355, 2279–2290 (1997). [CrossRef]
  16. A. Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 401–424 (2000). [CrossRef]
  17. S. M. Barnett, “Quantum limited state discrimination,” Fortschr. Phys. 49, 909–913 (2001). [CrossRef]
  18. S. M. Barnett, “Optical demonstrations of statistical decision theory for quantum systems,” Quantum Inf. Comput. 4, 450–459 (2004).
  19. J. A. Bergou, U. Herzog, M. Hillery, “Discrimination of quantum states,” Lect. Notes Phys. 649, 417–465 (2004). [CrossRef]
  20. A. Chefles, “Quantum states: discrimination and classical information transmission. A review of experimental progress,” Lect. Notes Phys. 649, 467–511 (Springer, 2004). [CrossRef]
  21. J. A. Bergou, “Quantum state discrimination and selected applications,” J. Phys.: Conf. Ser. 84, 012001 (2007). [CrossRef]
  22. J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton U. Press, 1983).
  23. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1993).
  24. P. Busch, M. Grabowski, P. Lahti, Operational Quantum Physics (Springer, 1995).
  25. C. Y. She, H. Heffner, “Simultaneous measurement of noncommuting observables,” Phys. Rev. 152, 1103–1110 (1966). [CrossRef]
  26. S. Stenholm, “Simultaneous measurement of conjugate variables,” Ann. Phys. (N.Y.) 218, 233–254 (1992). [CrossRef]
  27. N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20, 981–983 (1984). [CrossRef]
  28. N. G. Walker, “Quantum theory of multiport optical homodyning,” J. Mod. Opt. 34, 15–60 (1987). [CrossRef]
  29. S. M. Barnett, S. Croke, “On the conditions for discrimination between quantum states with minimum error,” J. Phys. A 42, 062001 (2009). [CrossRef]
  30. A. S. Kholevo, “On asymptotically optimal hypothesis testing in quantum statistics,” Theor. Probab. Appl. 23, 411–415 (1979). [CrossRef]
  31. L. P. Hughston, R. Jozsa, W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14–18 (1993). [CrossRef]
  32. P. Hausladen, W. K. Wootters, “A ‘pretty good’ measurement for distinguishing quantum states,” J. Mod. Opt. 41, 2385–2390 (1994). [CrossRef]
  33. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, W. K. Wootters, “Classical information capacity of a quantum channel,” Phys. Rev. A 54, 1869–1876 (1996). [CrossRef] [PubMed]
  34. M. Ban, K. Kurokawa, R. Momose, O. Hirota, “Optimum measurements for discrimination among symmetric states and parameter estimation,” IEEE Transl. J. Magn. Jpn. 36, 1269–1288 (1997).
  35. M. Sasaki, K. Kato, M. Izutsu, O. Hirota, “Quantum channels showing superadditivity in classical capacity,” Phys. Rev. A 58, 146–158 (1998). [CrossRef]
  36. Y. C. Eldar, G. D. Forney, “On quantum detection and the square-root measurement,” IEEE Trans. Inf. Theory 47, 858–872 (2001). [CrossRef]
  37. S. M. Barnett, “Minimum-error discrimination between multiply symmetric states,” Phys. Rev. A 64, 030303 (2001). [CrossRef]
  38. C.-L. Chou, L. Y. Hsu, “Minimum-error discrimination between symmetric mixed quantum states,” Phys. Rev. A 68, 042305 (2003). [CrossRef]
  39. Y. C. Eldar, A. Megretski, G. C. Verghese, “Optimal detection of symmetric mixed quantum states,” IEEE Trans. Inf. Theory 50, 1198–1207 (2004). [CrossRef]
  40. A. Peres, “Neumark’s theorem and quantum inseparability,” Found. Phys. 20, 1441–1453 (1990). [CrossRef]
  41. C. Mochon, “Family of generalized ‘pretty good’ measurements and the minimal-error pure-state discrimination problems for which they are optimal,” Phys. Rev. A 73, 032328 (2006). [CrossRef]
  42. K. Hunter, “Measurement does not always aid state discrimination,” Phys. Rev. A 68, 012306 (2003). [CrossRef]
  43. E. Andersson, S. M. Barnett, C. R. Gilson, K. Hunter, “Minimum-error discrimination between three mirror-symmetric states,” Phys. Rev. A 65, 052308 (2002). [CrossRef]
  44. C.-L. Chou, “Minimum-error discrimination among mirror-symmetric mixed quantum states,” Phys. Rev. A 70, 062316 (2004). [CrossRef]
  45. K. Hunter, Optimal Generalised Measurement Strategies, Ph.D. thesis (University of Strathclyde, 2004).
  46. K. Hunter, “Results in optimal discrimination,” in Proceedings of The Seventh International Conference on Quantum Communication, Measurement and Computing (QCMC04), Vol. 734 of American Institute of Physics Conference Series (AIP, 2004), pp. 83–86.
  47. H. Barnum, E. Knill, “Reversing quantum dynamics with near-optimal quantum and classical fidelity,” J. Math. Phys. 43, 2097–2106 (2002). [CrossRef]
  48. A. Montanaro, “On the distinguishability of random quantum states,” Commun. Math. Phys. 273, 619–636 (2007). [CrossRef]
  49. A. Montanaro, “A lower bound on the probability of error in quantum state discrimination,” in IEEE Information Theory Workshop, 2008. ITW '08 (IEEE, 2008), pp. 378–380.
  50. D. Qiu, “Minimum-error discrimination between mixed quantum states,” Phys. Rev. A 77, 012328 (2008). [CrossRef]
  51. M. Ježek, J. Řeháček, J. Fiurášek, “Finding optimal strategies for minimum-error quantum-state discrimination,” Phys. Rev. A 65, 060301 (2002). [CrossRef]
  52. Y. C. Eldar, A. Mergretski, G. C. Verghese, “Designing optimal quantum detectors via semidefinite programming,” IEEE Trans. Inf. Theory 49, 1007–1012 (2003). [CrossRef]
  53. I. D. Ivanovic, “How to differentiate between non-orthogonal states,” Phys. Lett. A 123, 257–259 (1987). [CrossRef]
  54. D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett. A 126, 303–306 (1988). [CrossRef]
  55. A. Peres, “How to differentiate between non-orthogonal states,” Phys. Lett. A 128, 19–19 (1988). [CrossRef]
  56. G. Jaeger, A. Shimony, “Optimal distinction between two non-orthogonal quantum states,” Phys. Lett. A 197, 83–87 (1995). [CrossRef]
  57. B. Huttner, N. Imoto, N. Gisin, T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995). [CrossRef] [PubMed]
  58. R. Loudon, The Quantum Theory of Light (Oxford U. Press, 2000).
  59. A. Chefles, “Unambiguous discrimination between linearly independent quantum states,” Phys. Lett. A 239, 339–347 (1998). [CrossRef]
  60. A. Peres, D. R. Terno, “Optimal distinction between non-orthogonal quantum states,” J. Phys. A 31, 7105–7111 (1998). [CrossRef]
  61. A. Chefles, S. M. Barnett, “Optimum unambiguous discrimination between linearly independent symmetric states,” Phys. Lett. A 250, 223–229 (1998). [CrossRef]
  62. S. Zhang, Y. Feng, X. Sun, M. Ying, “Upper bound for the success probability of unambiguous discrimination among quantum states,” Phys. Rev. A 64, 062103 (2001). [CrossRef]
  63. L.-M. Duan, G.-C. Guo, “Probabilistic cloning and identification of linearly independent quantum states,” Phys. Rev. Lett. 80, 4999–5002 (1998). [CrossRef]
  64. X. Sun, S. Zhang, Y. Feng, M. Ying, “Mathematical nature of and a family of lower bounds for the success probability of unambiguous discrimination,” Phys. Rev. A 65, 044306 (2002). [CrossRef]
  65. Y. C. Eldar, “A semidefinite programming approach to optimal unambiguous discrimination of quantum states,” IEEE Trans. Inf. Theory 49, 446–456 (2003). [CrossRef]
  66. T. Rudolph, R. W. Spekkens, P. S. Turner, “Unambiguous discrimination of mixed states,” Phys. Rev. A 68, 010301 (2003). [CrossRef]
  67. S. M. Barnett, A. Chefles, I. Jex, “Comparison of two unknown pure quantum states,” Phys. Lett. A 307, 189–195 (2003). [CrossRef]
  68. S. Zhang, M. Ying, “Set discrimination of quantum states,” Phys. Rev. A 65, 062322 (2002). [CrossRef]
  69. C. Zhang, G. Wang, M. Ying, “Discrimination between pure states and mixed states,” Phys. Rev. A 75, 062306 (2007). [CrossRef]
  70. The support of a mixed state ρ̂ is the subspace spanned by its eigenvectors with nonzero eigenvalues. The kernel of a mixed state is the subspace orthogonal to its support.
  71. Y. Sun, J. A. Bergou, M. Hillery, “Optimum unambiguous discrimination between subsets of nonorthogonal quantum states,” Phys. Rev. A 66, 032315 (2002). [CrossRef]
  72. J. A. Bergou, U. Herzog, M. Hillery, “Quantum filtering and discrimination between sets of Boolean functions,” Phys. Rev. A 90, 257901 (2003).
  73. U. Herzog, J. A. Bergou, “Optimum unambiguous discrimination of two mixed quantum states,” Phys. Rev. A 71, 050301 (2005). [CrossRef]
  74. P. Raynal, N. Lütkenhaus, “Optimal unambiguous state discrimination of two density matrices: a second class of exact solutions,” Phys. Rev. A 76, 052322 (2007). [CrossRef]
  75. U. Herzog, “Optimum unambiguous discrimination of two mixed states and application to a class of similar states,” Phys. Rev. A 75, 052309 (2007). [CrossRef]
  76. P. Raynal, N. Lütkenhaus, S. J. van Enk, “Reduction theorems for optimal unambiguous state discrimination of density matrices,” Phys. Rev. A 68, 022308 (2003). [CrossRef]
  77. M. Kleinmann, H. Kampermann, D. Bruss, “Structural approach to unambiguous discrimination of two mixed states,” arXiv.org, arXiv:0803.1083v1 (March 7, 2008).
  78. Y. Feng, R. Duan, M. Ying, “Unambiguous discrimination between mixed quantum states,” Phys. Rev. A 70, 012308 (2004). [CrossRef]
  79. P. Raynal, N. Lütkenhaus, “Optimal unambiguous state discrimination of two density matrices: lower bound and class of exact solutions,” Phys. Rev. A 72, 022342 (2005). [CrossRef]
  80. Y. C. Eldar, M. Stojnic, B. Hassibi, “Optimal quantum detectors for unambiguous detection of mixed states,” Phys. Rev. A 69, 062318 (2004). [CrossRef]
  81. S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, J. Jeffers, “Maximum confidence quantum measurements,” Phys. Rev. Lett. 96, 070401 (2006). [CrossRef] [PubMed]
  82. R. L. Kosut, I. Walmsley, Y. Eldar, H. Rabitz, “Quantum state detector design: optimal worst-case a posteriori performance,” arXiv.org, arXiv:quant-ph/0403150v1 (March 21, 2004).
  83. A. Chefles, S. M. Barnett, “Strategies for discriminating between non-orthogonal quantum states,” J. Mod. Opt. 45, 1295–1302 (1998). [CrossRef]
  84. C.-W. Zhang, C.-F. Li, G.-C. Guo, “General strategies for discrimination of quantum states,” Phys. Lett. A 261, 25–29 (1999). [CrossRef]
  85. M. A. P. Touzel, R. B. A. Adamson, A. M. Steinberg, “Optimal bounded-error strategies for projective measurements in non-orthogonal state discrimination,” Phys. Rev. A 76, 062314 (2007). [CrossRef]
  86. J. Fiurášek, M. Ježek, “Optimal discrimination of mixed quantum states involving inconclusive results,” Phys. Rev. A 67, 012321 (2003). [CrossRef]
  87. U. Herzog, J. A. Bergou, “Minimum-error discrimination between subsets of linearly dependent quantum states,” Phys. Rev. A 65, 050305 (2002). [CrossRef]
  88. C. E. Shannon, W. Weaver, The Mathematical Theory of Communication (U. Illinois Press, 1963).
  89. T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley, 1991).
  90. E. B. Davies, “Information and quantum measurement,” IEEE Trans. Inf. Theory IT-24, 596–599 (1978). [CrossRef]
  91. L. B. Levitin, “Optimal quantum measurements for two pure and mixed states,” in Quantum Communications and Measurement, V. P. Belavkin, O. Hirota, and R. L. Hudson, eds. (Plenum, 1995), pp. 439–448. [CrossRef]
  92. M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, O. Hirota, “Accessible information and optimal strategies for real symmetrical quantum sources,” Phys. Rev. A 59, 3325–3335 (1999). [CrossRef]
  93. G. C. Ghirardi, A. Rimini, T. Weber, “A general argument against superluminal transmission through the quantum mechanical measurement process,” Lett. Nuovo Cimento 27, 293–298 (1980). [CrossRef]
  94. P. J. Bussey, ““Super-luminal communication in Einstein–Podolsky–Rosen experiments,” Phys. Lett. A 90, 9–12 (1982). [CrossRef]
  95. T. F. Jordan, “Quantum correlations do not transmit signals,” Phys. Lett. A 94, 264–264 (1983). [CrossRef]
  96. P. J. Bussey, “Communication and non-communication in Einstein–Rosen experiments,” Phys. Lett. A 123, 1–3 (1987). [CrossRef]
  97. S. Popescu, D. Rohrlich, “Quantum nonlocality as an axiom,” Found. Phys. 24, 379–385 (1994). [CrossRef]
  98. L. Masanes, A. Acin, N. Gisin, “General properties of nonsignaling theories,” Phys. Rev. A 73, 012112 (2006). [CrossRef]
  99. N. Gisin, “Quantum cloning without signaling,” Phys. Lett. A 242, 1–2 (1998). [CrossRef]
  100. S. Ghosh, G. Kar, A. Roy, “Optimal cloning and no signaling,” Phys. Lett. A 261, 17–19 (1999). [CrossRef]
  101. S. M. Barnett, E. Andersson, “Bound on measurement based on the no-signaling condition,” Phys. Rev. A 65, 044307 (2002). [CrossRef]
  102. Y. Feng, S. Zhang, R. Duan, M. Ying, “Lower bound on inconclusive probability of unambiguous discrimination,” Phys. Rev. A 66, 062313 (2002). [CrossRef]
  103. S. Croke, E. Andersson, S. M. Barnett, “No-signaling bound on quantum state discrimination,” Phys. Rev. A 77, 012113 (2008). [CrossRef]
  104. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  105. A. E. Siegman, Lasers (University Science Books, 1986).
  106. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, 1975).
  107. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  108. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  109. S. M. Barnett, E. Riis, “Experimental demonstration of polarization discrimination at the Helstrom bound,” J. Mod. Opt. 44, 1061–1064 (1997). [CrossRef]
  110. R. B. M. Clarke, V. M. Kendon, A. Chefles, S. M. Barnett, E. Riis, “Experimental realization of optimal detection strategies for overcomplete states,” Phys. Rev. A 64, 012303 (2001). [CrossRef]
  111. B. Huttner, A. Muller, G. Gautier, H. Zbinden, N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996). [CrossRef] [PubMed]
  112. R. B. M. Clarke, A. Chefles, S. M. Barnett, E. Riis, “Experimental demonstration of optimal unambiguous state discrimination,” Phys. Rev. A 63, 040305. [CrossRef]
  113. M. Mohseni, A. M. Steinberg, J. A. Bergou, “Optical realization of optimal unambiguous discrimination for pure and mixed quantum states,” Phys. Rev. Lett. 93, 200403 (2004). [CrossRef] [PubMed]
  114. S. Franke-Arnold, E. Andersson, S. M. Barnett, S. Stenholm, “Generalized measurements of atomic qubits,” Phys. Rev. A 63, 052301 (2001). [CrossRef]
  115. P. J. Mosley, S. Croke, I. A. Walmsley, S. M. Barnett, “Experimental realization of maximum confidence quantum state discrimination for the extraction of quantum information,” Phys. Rev. Lett. 97, 193601 (2006). [CrossRef] [PubMed]
  116. S. Croke, P. J. Mosley, S. M. Barnett, I. A. Walmsley, “Maximum confidence measurements and their optical implementation,” Eur. Phys. J. D 41, 589–598 (2007). [CrossRef]
  117. S. E. Ahnert, M. C. Payne, “General implementation of all possible positive-operator-value measurements of single-photon polarization states,” Phys. Rev. A 71, 012330 (2005). [CrossRef]
  118. J. Mizuno, M. Fujiwara, M. Akiba, T. Kawanishi, S. M. Barnett, M. Sasaki, “Optimum detection for extracting maximum information from symmetric qubit sets,” Phys. Rev. A 65, 012315 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited