OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 1, Iss. 2 — Apr. 15, 2009

Recent advances in coherent optical communication

Guifang Li  »View Author Affiliations


Advances in Optics and Photonics, Vol. 1, Issue 2, pp. 279-307 (2009)
http://dx.doi.org/10.1364/AOP.1.000279


View Full Text Article

Acrobat PDF (1194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent progress in coherent optical communication, a field revived by advances in digital signal processing (DSP), is reviewed. DSP-based phase and polarization management techniques make coherent detection robust and practical. With coherent detection, the complex field of the received signal is fully recovered, allowing compensation of linear impairments including chromatic dispersion and polarization-mode dispersion using digital filters. In addition, fiber nonlinearities can also be compensated by using backward propagation in the digital domain.

© 2009 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 19, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 11, 2008
Published: February 11, 2009

Virtual Issues
(2009) Advances in Optics and Photonics

Citation
Guifang Li, "Recent advances in coherent optical communication," Adv. Opt. Photon. 1, 279-307 (2009)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-2-279


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Griffin and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” in Optical Fiber Communications Conference, A.Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WX6.
  2. T. Tokle, C. R. Davidson, M. Nissov, J. X. Cai, D. Foursa, and A. Pilipetskii, “6500 km transmission of RZ-DQPSK WDM signals,” Electron. Lett. 40, 444-445 (2004). [CrossRef]
  3. P. S. Cho, G. Harston, C. J. Kerr, A. S. Greenblatt, A. Kaplan, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. B. Khurgin, “Investigation of 2-b/s/Hz40-gb/s DWDM transmission over 4×100 km SMF-28 fiber using RZ-DQPSK and polarization multiplexing,” IEEE Photon. Technol. Lett. 16, 656-658 (2004). [CrossRef]
  4. S. Hayase, N. Kikuchi, K. Sekein, and S. Sasaki, “Proposal of 8-state per symbol (binary ASK and QPSK) 30-Gbit/s optical modulation/demodulation scheme,” in European Conference on Optical Communication (Institute of Electrical Engineers, 2003), paper TH2.6.4.
  5. C. Kim and G. Li, “Direct-detection optical differential 8-level phase-shift keying (OD8PSK) for spectrally efficient transmission,” Opt. Express 12, 3415-3421 (2004). [CrossRef]
  6. Y. Han, C. Kim, and G. Li, “Simplified receiver implementation for optical differential 8-level phase-shift keying,” Electron. Lett. 40, 1372-1373 (2004). [CrossRef]
  7. Y. Han and G. Li, “Direct detection differential polarization-phase-shift keying based on Jones vector,” Opt. Express 12, 5821-5826 (2004). [CrossRef]
  8. L. G. Kazovsky, S. Benedetto, and A. E. Willner, Optical Fiber Communication Systems (Artech House, 1996).
  9. T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications (Springer, 1988).
  10. R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technol. 17, 1602-1616 (1999). [CrossRef]
  11. J. R. Barry and J. M. Kahn, “Carrier synchronization for homodyne and heterodyne-detection of optical quadriphase-shift keying,” J. Lightwave Technol. 10, 1939-1951 (1992).
  12. L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182-195 (1986).
  13. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006). [CrossRef]
  14. G. Goldfarb and G. Li, “BER estimation of QPSK homodyne detection with carrier phase estimation using digital signal processing,” Opt. Express 14, 8043-8053 (2006). [CrossRef]
  15. R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17, 887-889 (2005). [CrossRef]
  16. R. Noé, “PLL-Free synchronous QPSK receiver concept with digital I&Q baseband processing,” in Proceedings of the 30th European Conference on Optical Communication (ECOC) (2004), paper We4. P.120.
  17. D. S. Ly-Gagnon, S. Tsukarnoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24, 12-21 (2006). [CrossRef]
  18. R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” J. Lightwave Technol. 23, 802-808 (2005). [CrossRef]
  19. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications (Prentice Hall, 1996).
  20. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. (to be published).
  21. A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19, 366-368 (2007). [CrossRef]
  22. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25, 2675-2692 (2007).
  23. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13, 7527-7534 (2005). [CrossRef]
  24. D. Gesbert, M. Shafi, S. Da-shan, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun. 21, 281-302 (2003). [CrossRef]
  25. A. H. Sayed, Fundamentals of Adaptive Filtering (Wiley, 2003).
  26. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15, 2120-2126 (2007). [CrossRef]
  27. D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28, 1867-1875 (1980).
  28. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674-676 (2004). [CrossRef]
  29. G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19, 969-971 (2007). [CrossRef]
  30. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25, 2033-2043 (2007).
  31. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated 20-Gbits/s QPSK transmission over 200-km Standard single-mode fiber using homodyne detection and DSP for dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OWB4.
  32. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17, 714-716 (2005). [CrossRef]
  33. S. L. Woodward, H. Sun-Yuan, M. D. Feuer, and M. Boroditsky, “Demonstration of an electronic dispersion compensator in a 100-km10-Gb/s ring network,” IEEE Photon. Technol. Lett. 15, 867-869 (2003).
  34. K. Roberts, L. Chuandong, L. Strawczynski, M. O. Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18, 403-405 (2006). [CrossRef]
  35. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, “Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system,” IEEE Photon. Technol. Lett. 19, 9-11 (2007). [CrossRef]
  36. R.-J. Essiambre, P. J. Winzer, X. Q. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
  37. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006). [CrossRef]
  38. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16, 880-888 (2008). [CrossRef]
  39. C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27, 1619-1621 (2002).
  40. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  41. L. Xun, C. Xingzhong, and M. Qasmi, “A broad-band digital filtering approach for time-domain simulation of pulse propagation in optical fiber,” J. Lightwave Technol. 23, 864-875 (2005). [CrossRef]
  42. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  43. E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16, 16124-16137 (2008). [CrossRef]
  44. T. Schneider, Nonlinear Optics in Telecommunications (Springer, 2004).
  45. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20, 1887-1889 (2008).
  46. G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal wavelength-division multiplexing using coherent detection,” IEEE Photon. Technol. Lett. 19, 2015-2017 (2007). [CrossRef]
  47. C. Francia, “Constant step-size analysis in numerical simulation for correct four-wave-mixing power evaluation in optical fiber transmission systems,” IEEE Photon. Technol. Lett. 11, 69-71 (1999). [CrossRef]
  48. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill, “8×114 Gb/s, 25-GHz-spaced, PolMux-RZ-8PSK transmission over 640 km of SSMF employing digital coherent detection and EDFA-only amplification,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP1.
  49. M. Seimetz, L. Molle, D.-D. Gross, B. Auth, and R. Freund, “Coherent RZ-8PSK transmission at 30 Gbits/s over 1200 km employing homodyne detection with digital carrier phase estimation,” in Proceedings of the 33rd European Conference on Optical Communication (ECOC) ( 2007), paper WE 08.03.04.
  50. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16, 873-879 (2008). [CrossRef]
  51. M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, “64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection,” Opt. Express 16, 829-840 (2008). [CrossRef]
  52. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17, 504-506 (2005). [CrossRef]
  53. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16, 841-859 (2008). [CrossRef]
  54. W. Shieh, X. W. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Netw. 7, 234-255 (2008). [CrossRef]
  55. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14, 2079-2084 (2006). [CrossRef]
  56. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131-138 (2007). [CrossRef]
  57. I. Kim, C. Kim, and G. Li, “Requirements for the sampling source in coherent linear sampling,” Opt. Express 12, 2723-2730 (2004). [CrossRef]
  58. X. Chen, I. Kim, G. Li, H. Zhang, and B. Zhou, “Coherent detection using optical time-domain sampling,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA62.
  59. K. Kikuchi, K. Igarashi, Y. Mori, and C. Zhang, “Demodulation of 320-Gbits/s optical quadrature phase-shift keying signal with digital coherent receiver having time-division demultiplexing function,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuO4.
  60. T. Pfau, S. Hoffmann, R. Peveling, S. Bhandare, S. K. Ibrahim, O. Adamczyk, M. Porrmann, R. Noe, and Y. Achiam, “First real-time data recovery for synchronous QPSK transmission with standard DFB lasers,” IEEE Photon. Technol. Lett. 18, 1907-1909 (2006). [CrossRef]
  61. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noe, “Coherent optical communication: towards realtime systems at 40 Gbits/s and beyond,” Opt. Express 16, 866-872 (2008). [CrossRef]
  62. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited