OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 2, Iss. 1 — Mar. 31, 2010

Stimulated Brillouin scattering in optical fibers

Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury  »View Author Affiliations


Advances in Optics and Photonics, Vol. 2, Issue 1, pp. 1-59 (2010)
http://dx.doi.org/10.1364/AOP.2.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed overview of stimulated Brillouin scattering (SBS) in single-mode optical fibers. The review is divided into two parts. In the first part, we discuss the fundamentals of SBS. A particular emphasis is given to analytical calculation of the backreflected power and SBS threshold (SBST) in optical fibers with various index profiles. For this, we consider acousto-optic interaction in the guiding geometry and derive the modal overlap integral, which describes the dependence of the Brillouin gain on the refractive index profile of the optical fiber. We analyze Stokes backreflected power initiated by thermal phonons, compare values of the SBST calculated from different approximations, and discuss the SBST dependence on the fiber length. We also review an analytical approach to calculate the gain of Brillouin fiber amplifiers (BFAs) in the regime of pump depletion. In the high-gain regime, fiber loss is a nonnegligible effect and needs to be accounted for along with the pump depletion. We provide an accurate analytic expression for the BFA gain and show results of experimental validation. Finally, we review methods to suppress SBS including index-controlled acoustic guiding or segmented fiber links. The second part of the review deals with recent advances in fiber-optic applications where SBS is a relevant effect. In particular, we discuss the impact of SBS on the radio-over-fiber technology, enhancement of the SBS efficiency in Raman-pumped fibers, slow light due to SBS and SBS-based optical delay lines, Brillouin fiber-optic sensors, and SBS mitigation in high-power fiber lasers, as well as SBS in multimode and microstructured fibers. A detailed derivation of evolutional equations in the guided wave geometry as well as key physical relations are given in appendices.

© 2009 Optical Society of America

ToC Category:
Scattering

History
Original Manuscript: June 19, 2009
Revised Manuscript: November 3, 2009
Manuscript Accepted: November 3, 2009
Published: December 17, 2009

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-2-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).
  2. I. L. Fabelinskii, “The discovery of combination scattering of light in Russia and India,” Phys. Usp. 46, 1105–1112 (2003). [CrossRef]
  3. B. R. Masters, “C. V. Raman and the Raman effect,” Opt. Photonics News 20(3), 41–45 (2009). [CrossRef]
  4. V. Sundar, R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook, 2nd ed., R. C. Dorf, ed. (CRC Press, 1997), pp. 1193–1200.
  5. R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964). [CrossRef]
  6. E. L. Buckland, R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996). [CrossRef] [PubMed]
  7. E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872–874 (1999). [CrossRef]
  8. E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000). [CrossRef]
  9. E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000). [CrossRef]
  10. A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002). [CrossRef]
  11. P. D. Townsend, A. J. Poustie, P. J. Hardman, K. J. Blow, “Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers,” Opt. Lett. 21, 333–335 (1996). [CrossRef] [PubMed]
  12. A. Fellegara, A. Melloni, M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997). [CrossRef]
  13. E. L. Buckland, R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997). [CrossRef] [PubMed]
  14. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998). [CrossRef]
  15. A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004). [CrossRef]
  16. N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988). [CrossRef] [PubMed]
  17. N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989). [CrossRef]
  18. A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002). [CrossRef]
  19. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004). [CrossRef]
  20. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  21. J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002). [CrossRef] [PubMed]
  22. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005). [CrossRef] [PubMed]
  23. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23, 3509–3516 (2005). [CrossRef]
  24. S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005). [CrossRef] [PubMed]
  25. A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005). [CrossRef] [PubMed]
  26. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009). [CrossRef] [PubMed]
  27. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009). [CrossRef]
  28. B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009). [CrossRef]
  29. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26, 1614–1620 (2009). [CrossRef]
  30. K. Ogusu, H. Li, M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004). [CrossRef]
  31. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005). [CrossRef] [PubMed]
  32. M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  33. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13, 112–118 (1996). [CrossRef]
  34. Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000). [CrossRef]
  35. P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987). [CrossRef]
  36. A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989). [CrossRef]
  37. K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995). [CrossRef]
  38. K. Ogusu, “Interplay between cascaded stimulated Brillouin scattering and four-wave mixing in a fiber Fabry–Perot resonator,” J. Opt. Soc. Am. B 20, 685–694 (2003). [CrossRef]
  39. J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007). [CrossRef] [PubMed]
  40. P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988). [CrossRef]
  41. D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990). [CrossRef]
  42. A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003). [CrossRef]
  43. C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993). [CrossRef]
  44. S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993). [CrossRef]
  45. M. F. dos Santos Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995). [CrossRef]
  46. B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989). [CrossRef]
  47. M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991). [CrossRef]
  48. S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992). [CrossRef]
  49. A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002). [CrossRef]
  50. A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005). [CrossRef]
  51. G. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” J. Lightwave Technol. 22, 704–712 (1986).
  52. P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).
  53. K. Ogusu, “Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings,” J. Opt. Soc. Am. B 17, 769–774 (2000). [CrossRef]
  54. H. Lee, G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003). [CrossRef] [PubMed]
  55. H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999). [CrossRef]
  56. A. Djupsjöbacka, C. Jacobsen, B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18, 416–424 (2000). [CrossRef]
  57. V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar-H, “Dynamic effects of the stimulated Brillouin scattering in fibers due to acoustic diffraction,” J. Opt. Soc. Am. B 19, 689–694 (2002). [CrossRef]
  58. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990). [CrossRef] [PubMed]
  59. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).
  60. C. Montes, A. M. Rubenchik, “Stimulated Brillouin scattering from trains of solitons in optical fibers: information degradation,” J. Opt. Soc. Am. B 9, 1857–1875 (1992). [CrossRef]
  61. A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).
  62. E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994). [CrossRef]
  63. A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998). [CrossRef]
  64. Y. Jaouën, L. du Mouza, G. Debarge, “Electrostriction-induced acoustic effect in ultralong-distance soliton transmission systems,” Opt. Lett. 23, 1185–1187 (1998). [CrossRef]
  65. D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993). [CrossRef]
  66. F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264. [CrossRef]
  67. X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992). [CrossRef]
  68. F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994). [CrossRef]
  69. F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994). [CrossRef]
  70. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968). [CrossRef]
  71. B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2. [CrossRef]
  72. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), chap. 9.
  73. R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  74. A. Yariv, Quantum Electronics, 3d ed. (Wiley, 1989).
  75. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), chap. 9.
  76. C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000). [CrossRef]
  77. R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985). [CrossRef] [PubMed]
  78. J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 1995).
  79. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  80. R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. MTT-17, 893–904 (1969). [CrossRef]
  81. R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64, 1–37 (1978). [CrossRef]
  82. P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979). [CrossRef]
  83. J. D. Achenbach, Wave Propagation in Elastic Solids (North Holland, 1973).
  84. B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, 1990).
  85. A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986). [CrossRef]
  86. C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).
  87. A. Safaai-Jazi, R. O. Claus, “Acoustic modes in optical fiberlike waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-35, 619–627 (1988). [CrossRef]
  88. K. Tajima, “Exact acoustic leaky wave solutions for single-mode fibres,” Electron. Lett. 27, 251–253 (1991). [CrossRef]
  89. J. Qu, L. Jacobs, “Cylindrical waveguides and their applications in ultrasonic evaluation,” in Ultrasonic Nondestructive Evaluation, T. Kundu, ed. (CRC Press, 2004).
  90. E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999). [CrossRef]
  91. G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008). [CrossRef] [PubMed]
  92. W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006). [CrossRef]
  93. W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006). [CrossRef]
  94. W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008). [CrossRef] [PubMed]
  95. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef] [PubMed]
  96. K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982). [CrossRef]
  97. R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef] [PubMed]
  98. A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991). [CrossRef] [PubMed]
  99. W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996). [CrossRef]
  100. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002). [CrossRef]
  101. S. Le Floch, P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003). [CrossRef]
  102. A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006). [CrossRef]
  103. P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990). [CrossRef]
  104. R. D. Esman, K. J. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference, vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.
  105. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007). [CrossRef] [PubMed]
  106. V. I. Kovalev, R. G. Harrison, “Threshold for stimulated Brillouin scattering in optical fiber,” Opt. Express 15, 17625–17630 (2007). [CrossRef] [PubMed]
  107. T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002). [CrossRef]
  108. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  109. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).
  110. For this fiber, there is another strong peak in the BGS at 10.9 GHz.
  111. K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996). [CrossRef]
  112. C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997). [CrossRef]
  113. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27, 927–929 (2002). [CrossRef]
  114. F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, D. J. Richardson, “Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion,” J. Opt. Soc. Am. B 24, 2185–2194 (2007). [CrossRef]
  115. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983). [CrossRef]
  116. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998). [CrossRef]
  117. A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002). [CrossRef]
  118. T. Tanemura, Y. Takushima, K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002). [CrossRef]
  119. Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005). [CrossRef]
  120. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000). [CrossRef]
  121. M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994). [CrossRef]
  122. K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994). [CrossRef]
  123. A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004). [CrossRef]
  124. T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004). [CrossRef]
  125. L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008). [CrossRef]
  126. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.
  127. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966). [CrossRef]
  128. L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998). [CrossRef]
  129. R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969). [CrossRef]
  130. M. Vasilyev, A. Kobyakov, “Effect of pump depletion on the noise figure of distributed Raman amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWL3.
  131. A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006). [CrossRef] [PubMed]
  132. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978). [CrossRef]
  133. N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980). [CrossRef] [PubMed]
  134. S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998). [CrossRef]
  135. S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.
  136. W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008). [CrossRef]
  137. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992). [CrossRef]
  138. C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993). [CrossRef]
  139. K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996). [CrossRef]
  140. A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.
  141. S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996). [CrossRef]
  142. Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.
  143. P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.
  144. F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993). [CrossRef]
  145. N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993). [CrossRef]
  146. J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23, 3808–3814 (2005). [CrossRef]
  147. K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995). [CrossRef]
  148. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, “Increase in the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001). [CrossRef]
  149. M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993). [CrossRef]
  150. H. Al-Raweshidy and S. Komaki, eds., Radio over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  151. A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.
  152. X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.
  153. H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.
  154. M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007). [CrossRef]
  155. R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007). [CrossRef]
  156. M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006). [CrossRef]
  157. M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007). [CrossRef]
  158. M. Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2004).
  159. C. Headley, G. P. Agrawal, Raman Amplification in Fiber-Optical Communication Systems (Elsevier, 2004).
  160. A. Kobyakov, “Prospects of Raman-assisted transmission systems,” Proc. SPIE 5246, 174–188 (2003). [CrossRef]
  161. R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004). [CrossRef]
  162. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000). [CrossRef]
  163. M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002). [CrossRef]
  164. T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002). [CrossRef]
  165. L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light—Science and Applications, J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009), chap. 9.
  166. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007). [CrossRef]
  167. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008). [CrossRef]
  168. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  169. L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009). [CrossRef]
  170. K.-Y. Song, M. G. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef] [PubMed]
  171. Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007). [CrossRef] [PubMed]
  172. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005). [CrossRef] [PubMed]
  173. K.-Y. Song, M. G. Herráez, L. Thévenaz, “Gain assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005). [CrossRef] [PubMed]
  174. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007). [CrossRef] [PubMed]
  175. T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008). [CrossRef] [PubMed]
  176. M. G. Herráez, K.-Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006). [CrossRef]
  177. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  178. K. Y. Song, K. Hotate, “25 GHz Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007). [CrossRef] [PubMed]
  179. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007). [CrossRef] [PubMed]
  180. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007). [CrossRef] [PubMed]
  181. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995). [CrossRef]
  182. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995). [CrossRef]
  183. L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).
  184. K. T. V. Graffan and B. T. Meggitt, eds., Optical Fiber Sensor Technology : Volume 4: Chemical and Environmental Sensing (Kluwer Academic, 1999).
  185. Y. Li, F. Zhang, T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663–1667 (2003). [CrossRef]
  186. S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003). [CrossRef]
  187. W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008). [CrossRef]
  188. S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors, 2nd ed. (CRC Press, 2008).
  189. M. Tateda, “First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy,” J. Lightwave Technol. 8, 1269–1272 (1990). [CrossRef]
  190. F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524. [CrossRef]
  191. L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004). [CrossRef] [PubMed]
  192. X. Bao, “Optical fiber sensors based on Brillouin scattering,” Opt. Photonics News 20(9), 41–45 (2009). [CrossRef]
  193. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007). [CrossRef]
  194. S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).
  195. M. D. Mermelstein, S. Ramachandran, J. M. Fini, S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher order mode optical fiber,” Opt. Express 15, 15952–15963 (2007). [CrossRef] [PubMed]
  196. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003). [CrossRef] [PubMed]
  197. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005). [CrossRef]
  198. V. I. Kovalev, R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31, 161–163 (2006). [CrossRef] [PubMed]
  199. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007). [CrossRef]
  200. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007). [CrossRef] [PubMed]
  201. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).
  202. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007). [CrossRef] [PubMed]
  203. A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004). [CrossRef]
  204. A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005). [CrossRef] [PubMed]
  205. A. Fotiadi, E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1996, paper QFC4.
  206. K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001). [CrossRef]
  207. V. I. Kovalev, R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002). [CrossRef]
  208. S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.
  209. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  210. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006). [CrossRef]
  211. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006). [CrossRef] [PubMed]
  212. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16, 9398–9404 (2008). [CrossRef] [PubMed]
  213. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582–593 (2008). [CrossRef]
  214. J. E. McElhenny, R. Pattnaik, J. Toulouse, “Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2107–2115 (2008). [CrossRef]
  215. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006). [CrossRef] [PubMed]
  216. J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007). [CrossRef]
  217. G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008). [CrossRef] [PubMed]
  218. S. Yang, H. Chen, C. Qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008). [CrossRef] [PubMed]
  219. C. Vassalo, Optical Waveguide Concepts (Elsevier, 1991).