OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 2, Iss. 2 — Jun. 30, 2010

Self-assembled quantum-dot superluminescent light-emitting diodes

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang  »View Author Affiliations


Advances in Optics and Photonics, Vol. 2, Issue 2, pp. 201-228 (2010)
http://dx.doi.org/10.1364/AOP.2.000201


View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of low-cost, compact, high-power and broadband superluminescent light-emitting diodes is an important research subject for a wide range of applications. We describe how self-assembled quantum-dot structures can provide an efficient means of realizing such devices utilizing a number of their unique physical properties. Such quantum dot superluminescent diodes are leading to a revolution in the development of broadband emitters for widespread medical, biological and telecommunications applications.

© 2010 Optical Society of America

ToC Category:
Optoelectronics

History
Original Manuscript: September 10, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 9, 2009
Published: January 27, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, "Self-assembled quantum-dot superluminescent light-emitting diodes," Adv. Opt. Photon. 2, 201-228 (2010)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-2-2-201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979). [CrossRef]
  2. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988). [CrossRef]
  3. V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002). [CrossRef]
  4. O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990). [CrossRef]
  5. C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).
  6. A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995). [CrossRef]
  7. Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999). [CrossRef]
  8. Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002). [CrossRef]
  9. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).
  10. D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003). [CrossRef]
  11. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004). [CrossRef]
  12. A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).
  13. N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005). [CrossRef]
  14. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005). [CrossRef]
  15. M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005). [CrossRef]
  16. B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006). [CrossRef]
  17. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006). [CrossRef]
  18. H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007). [CrossRef]
  19. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007). [CrossRef]
  20. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007). [CrossRef]
  21. E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007). [CrossRef]
  22. C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007). [CrossRef]
  23. M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007). [CrossRef]
  24. Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007). [CrossRef]
  25. Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008). [CrossRef]
  26. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008). [CrossRef] [PubMed]
  27. P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009). [CrossRef]
  28. S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009). [CrossRef]
  29. O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002). [CrossRef]
  30. X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000). [CrossRef]
  31. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004). [CrossRef]
  32. Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998). [CrossRef]
  33. T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999). [CrossRef]
  34. G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998). [CrossRef]
  35. T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002). [CrossRef]
  36. H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004). [CrossRef]
  37. N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003). [CrossRef]
  38. G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000). [CrossRef]
  39. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998). [CrossRef]
  40. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999). [CrossRef]
  41. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000). [CrossRef]
  42. K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999). [CrossRef]
  43. A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999). [CrossRef]
  44. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999). [CrossRef]
  45. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006). [CrossRef]
  46. D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.
  47. M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24. [CrossRef]
  48. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009). [CrossRef] [PubMed]
  49. B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008). [CrossRef]
  50. W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005). [CrossRef]
  51. H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002). [CrossRef]
  52. H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000). [CrossRef]
  53. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007). [CrossRef]
  54. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000). [CrossRef]
  55. M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001). [CrossRef]
  56. J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005). [CrossRef]
  57. S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009). [CrossRef]
  58. X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008). [CrossRef]
  59. W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004). [CrossRef] [PubMed]
  60. R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996). [CrossRef]
  61. J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007). [CrossRef]
  62. S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008). [CrossRef]
  63. J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000). [CrossRef]
  64. J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006). [CrossRef]
  65. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008). [CrossRef]
  66. M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008). [CrossRef]
  67. S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007). [CrossRef]
  68. M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006). [CrossRef]
  69. F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998). [CrossRef]
  70. S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999). [CrossRef]
  71. H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008). [CrossRef]
  72. J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000). [CrossRef]
  73. C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007). [CrossRef]
  74. C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.
  75. DenseLight Semiconductors, http://www.denselight.com/tech.htm
  76. Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007). [CrossRef]
  77. Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).
  78. C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27, 968–969 (1991). [CrossRef]
  79. Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007). [CrossRef]
  80. L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999). [CrossRef]
  81. J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000). [CrossRef]
  82. Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006). [CrossRef]
  83. M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009). [CrossRef] [PubMed]
  84. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982). [CrossRef]
  85. O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002). [CrossRef]
  86. S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005). [CrossRef]
  87. L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998). [CrossRef]
  88. I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003). [CrossRef]
  89. D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002). [CrossRef]
  90. C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009). [CrossRef]
  91. V. Shidlovski, “Superluminescent diodes. Application notes. SLD sensitivity to optical feedback,” (Superlum, 2006), http://www.superlumdiodes.com/pdf/sld_feedback.pdf.
  92. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]
  93. T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).
  94. P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009). [CrossRef]
  95. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef] [PubMed]
  96. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006). [CrossRef]
  97. P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000). [CrossRef]
  98. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000). [CrossRef]
  99. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000). [CrossRef]
  100. A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003). [CrossRef]
  101. C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005). [CrossRef]
  102. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006). [CrossRef]
  103. A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007). [CrossRef]
  104. S. C. Woodworth, D. T. Cassidy, M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40, 6719–6724 (2001). [CrossRef]
  105. W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002). [CrossRef] [PubMed]
  106. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005). [CrossRef]
  107. N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005). [CrossRef]
  108. T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004). [CrossRef]
  109. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007). [CrossRef] [PubMed]
  110. M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000). [CrossRef]
  111. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003). [CrossRef]
  112. D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004). [CrossRef]
  113. H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007). [CrossRef]
  114. A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007). [CrossRef]
  115. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007). [CrossRef] [PubMed]
  116. A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008). [CrossRef]
  117. H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007). [CrossRef]
  118. C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008). [CrossRef]
  119. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004). [CrossRef] [PubMed]
  120. C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996). [CrossRef]
  121. B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited