## Coherence and entanglement in a two-qubit system

Advances in Optics and Photonics, Vol. 2, Issue 2, pp. 229-286 (2010)

http://dx.doi.org/10.1364/AOP.2.000229

Acrobat PDF (1029 KB)

### Abstract

Entanglement is a fundamental concept in quantum mechanics. In this review, we study various aspects of coherence and entanglement, illustrated by several examples. We relate the concepts of loss of coherence and disentanglement, via a model of two two-level atoms in different types of reservoir, including cases of both independent and common baths. Finally, we relate decoherence and disentanglement, by focusing on the sudden death of the entanglement and the dependence of the death time with the distance of our initial condition from the decoherence-free subspace. In particular, we study the sudden death of the entanglement in a two-atom system with a common reservoir.

© 2010 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.6570) Quantum optics : Squeezed states

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: November 2, 2009

Revised Manuscript: January 19, 2010

Manuscript Accepted: January 19, 2010

Published: March 17, 2010

**Virtual Issues**

(2010) *Advances in Optics and Photonics*

**Citation**

Miguel Orszag and Maritza Hernandez, "Coherence and entanglement in a two-qubit system," Adv. Opt. Photon. **2**, 229-286 (2010)

http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-2-2-229

Sort: Year | Journal | Reset

### References

- E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555-563 (1935). [CrossRef]
- A. Einstein, B. Podolosky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935). [CrossRef]
- M. Born, The Born-Einstein Letters 1916-1955 (Macmillan, 2005).
- J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1(3), 195-200 (1964).
- A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell's inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804-1807 (1982). [CrossRef]
- C. H. Thompson and H. Holstein, “The chaotic ball model: local realism and Bell test “detection loophole,” arXiv.org, arXiv:quant-ph/0210150 (2002).
- E. Santos, “Optical tests of Bell's inequalities not resting upon the absurd fair sampling assumption,” arXiv.org, arXiv:quant-ph/0401003 (2004).
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef]
- A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991); [CrossRef]
- D. Deutsch, A. K. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818-2821 (1996). [CrossRef]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef]
- J. H. Eberly, “Schmidt analysis of pure-state entanglement,” arXiv.org, arXiv:quant-ph/0508019 (2005).
- S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938-941 (1972). [CrossRef]
- J. H. Eberly, “Bell inequalities in quantum mechanics,” Am. J. Phys. 70, 276-279 (2002). [CrossRef]
- M. Orszag, Quantum Optics (Springer, 2000).
- R. Grobe, K. Rzazewski, and J. H. Eberly, “Measure of electron-electron correlation in atomic physics,” J. Phys. B 27, L503-L508 (1994). [CrossRef]
- A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVicenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457-3467 (1995). [CrossRef]
- D. Bruss, “Characterizing entanglement,” J. Math. Phys. 43, 4237-4251 (2002). [CrossRef]
- R. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277-4281 (1989). [CrossRef]
- A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413-1415 (1996). [CrossRef]
- M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 1-8 (1996). [CrossRef]
- P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition,” Phys. Lett. A 232, 333-339 (1997). [CrossRef]
- A. Sen, U. Sen, M. Lewestein, and A. Sampera, “The separability versus entanglement problem,” arXiv.org, arXiv:quant-phys/0508032 (2005).
- C. Bennett, D. DiVicenzo, J. Smolin, and W. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824-3851 (1996). [CrossRef]
- S. Hill and W. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022-5025 (1997). [CrossRef]
- W. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245-2248 (1998). [CrossRef]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996). [CrossRef]
- D. M. Mundarain and M. Orszag, “Entanglement distillation with local common reservoirs,” Phys. Rev. A 79, 022306 (2009). [CrossRef]
- D. M. Mundarain and M. Orszag, “Entanglement preservation by continuous distillation,” Phys. Rev. A 79, 052333 (2009). [CrossRef]
- W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36-44 (1991). [CrossRef]
- W. H. Zurek, “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?,” Phys. Rev. D 24, 1516-1525 (1981). [CrossRef]
- W. H. Zurek, “Environment-induced superselection rules,” Phys. Rev. D 26, 1862-1880 (1982). [CrossRef]
- N. Bohr, “The quantum postulate and the recent development of atomic theory,” Nature (London) 121, 580-590 (1928). [CrossRef]
- J. von Neumann, Mathematische Grundlagen der Quanten mechanik (Springer-Verlag, 1932).
- For generalized measurements and quantum state discrimination, see, for example, J. A. Bergou, U. Herzog, and M. Hillery, in Quantum State Discrimination in Quantum State Estimation: M.Paris and J.Rehacek, eds., Vol. 649 of Lecture Notes in Physics (Springer-Verlag, 2004), pp. 417-456, and .
- J. A. Bergou, “Discrimination of quantum states,” to be published in J. Mod. Opt..
- J. Preskill, Quantum Information and Computation Vol. 229 of Lecture Notes in Physics (Springer-Verlag, 1998).
- E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of Classical World in Quantum Theory (Springer, 1997).
- E. Joos and H. D. Zeh, “The emergence of classical properties through interaction with the environment,” Z. Phys. B 59, 223-243 (1985). [CrossRef]
- A. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian motion,” Physica A 121, 587-616 (1983). [CrossRef]
- D. F. Walls and G. J. Milburn, “Effect of dissipation on quantum coherence,” Phys. Rev. A 31, 2403-2408 (1985). [CrossRef]
- D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
- V. Buzek and P. L. Knight, in Progress in Optics, E.Wolf, ed. (Elsevier, A1995), Vol. XXXIV, p. 1.
- M. S. Kim and V. Buzek, “Schrödinger-cat states at finite temperature: influence of a finite-temperature heat bath on quantum interferences,” Phys. Rev. A 46, 4239-4251 (1992). [CrossRef]
- M. S. Kim and V. Buzek, “Decay of quantum coherences under the influence of a thermal heatbath: Schroedinger cat states at finite temperature,” J. Mod. Opt. 39, 1609-1614 (1992). [CrossRef]
- M. S. Kim and V. Buzek, “Photon statistics of superposition states in phase-sensitive reservoirs,” Phys. Rev. A 47, 610-619 (1993). [CrossRef]
- S. Schneider and G. J. Milburn, “Decoherence in ion traps due to laser intensity and phase fluctuations,” Phys. Rev. A 57, 3748-3752 (1998). [CrossRef]
- M. Murao and P. L. Knight, “Decoherence in nonclassical motional states of a trapped ion,” Phys. Rev. A 58, 663-669 (1998). [CrossRef]
- S. Schneider and G. J. Milburn, “Decoherence and fidelity in ion traps with fluctuating trap parameters,” Phys. Rev. A 59, 3766-3774 (1999). [CrossRef]
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594-2597 (1998). [CrossRef]
- D. A. Lidar and K. B. Whaley, “Decoherence-free subspaces and subsystems,” arXiv.org, arXiv:quant-phys/0301032 (2003).
- D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “A decoherence-free quantum memory using trapped ions,” Science 291, 1013-1015 (2001). [CrossRef]
- P. Zanardi and M. Rasetti, “Error avoiding quantum codes,” Mod. Phys. Lett. B 11, 1085-1093 (1997). [CrossRef]
- P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79, 3306-3309 (1997). [CrossRef]
- W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715 (2003). [CrossRef]
- T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef]
- L. Diósi, “Progressive decoherence and total environmental disentanglement,” Lect. Notes Phys. 622, 157-163 (2003). [CrossRef]
- P. Marek, J. Lee, and M. S. Kim, “Vacuum as a less hostile environment to entanglement,” Phys. Rev. A 77, 032302 (2008). [CrossRef]
- Y. X. Gong, Y.-S. Zhang, Y.-L. Dong, X.-L. Niu, Y.-F. Huang, and G.-C. Guo, “Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons,” Phys. Rev. A. 78, 042103 (2008). [CrossRef]
- D. Tolkunov, V. Privman, and P. K. Aravind, “Decoherence of a measure of entanglement,” Phys. Rev. A. 71, 060308(R) (2005). [CrossRef]
- J. P. Paz and A. J. Roncaglia, “Dynamical phases for the evolution of the entanglement between two oscillators coupled to the same environment,” Phys. Rev. A. 79, 032102 (2009). [CrossRef]
- C. Cormick and J. P. Paz, “Decoherence of Bell states by local interactions with a dynamic spin environment,” Phys. Rev. A. 78, 012357 (2008). [CrossRef]
- T. Gorin, C. Pineda, and T. H. Seligman, “Decoherence of an n-qubit quantum memory,” Phys. Rev. Lett. 99, 240405 (2007). [CrossRef]
- C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 106 (2007). [CrossRef]
- M. Ikram, F.-l. Li, and M. Zubairy, “Disentanglement in a two-qubit system subjected to dissipation environments,” Phys. Rev. A. 75, 062336 (2007). [CrossRef]
- K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A. 76, 022312 (2007). [CrossRef]
- A. Al-Qasimi and D. F. V. James, “Sudden death of entanglement at finite temperature,” Phys. Rev. A. 77, 012117 (2008). [CrossRef]
- M. Hernandez and M. Orszag, “Decoherence and disentanglement for two qubits in a common squeezed reservoir,” Phys. Rev. A. 78, 042114 (2008). [CrossRef]
- Z. Ficek and R. Tanás, “Dark periods and revivals of entanglement in a two-qubit system,” Phys. Rev. A. 74, 024304 (2006). [CrossRef]
- M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto-Ribeiro, and L. Davidovich, “Environment-induced death of entanglement,” Science 316, 579-582 (2007); [CrossRef]
- A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto-Ribeiro, and L. Davidovich, “Experimental investigation of the dynamics of entanglement: sudden death, complementarity and continuous monitoring of the environment,” Phys. Rev. A. 78, 022322 (2008). [CrossRef]
- D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002); [CrossRef]
- Z. Ficek and R. Tanas, “Entanglement induced by spontaneous emission in spatially extended two-atom systems,” J. Mod. Opt. 50, 2765-2779 (2003). [CrossRef]
- F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003). [CrossRef]
- Z. Ficek and R. Tanás, “Delayed sudden birth of entanglement,” Phys. Rev. A. 77, 054301 (2008). [CrossRef]
- B. Bellomo, R. Lo Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007). [CrossRef]
- S. Maniscalco, S. Olivares, and M. G. A. Paris, “Entanglement oscillations in non-Markovian quantum channels,” Phys. Rev. A 75, 062119 (2007); see also the related work in and, for multipartite systems, . [CrossRef]
- L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009). [CrossRef]
- B. Bellomo, R. Lo Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302 (2008). [CrossRef]
- C. E. Lopez, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008). [CrossRef]
- M. Franca-Santos, P. Milman, L. Davidovich, and N. Zagury, “Direct measurement of finite-time disentanglement induced by a reservoir,” Phys. Rev. A 73, 040305 (2006). [CrossRef]
- T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence of standard bipartite mixed states,” arXiv.org,arXiv:quant-ph/0503089 (2006).
- F. Lastra, S. Wallentowitz, M. Orszag, and M. Hernandez, “Quantum recoil effects in finite-time disentanglement of two distinguishable atoms,” J. Phys. B 42, 065504 (2009). [CrossRef]
- D. Mundarain and M. Orszag, “Decoherence-free subspace and entanglement by interaction with a common squeezed bath,” Phys. Rev. A 75, 040303(R) (2007). [CrossRef]
- D. Mundarain, M. Orszag, and J. Stephany, “Total quantum Zeno effect and intelligent states for a two-level system in a squeezed bath,” Phys. Rev. A 74, 052107 (2006). [CrossRef]
- T. Yu and J. H. Eberly, “Negative entanglement measure and what it implies,” arXiv.org, arXiv:quant-ph/0703083 (2007).
- R. Tanas and Z. Ficek, “Stationary two-atom entanglement induced by non-classical two-photon correlations,” J. Opt. B 6, S610-S617 (2004). [CrossRef]
- A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt 47, 2583--2598 (2000).. [CrossRef]
- A. M. Basharov, “Entanglement of atomic states upon collective radiative decay,” JETP Lett. 75, 123-126 (2002). [CrossRef]
- L. Jakobczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383-6392 (2002). [CrossRef]
- M. Paternostro, S. M. Tame, G. M. Palma, and M. S. Kim, “Entanglement generation and protection by detuning modulation,” Phys. Rev. A 74, 052317 (2006). [CrossRef]
- S. Natali and Z. Ficek, “Temporal and diffraction effects in entanglement creation in an optical cavity,” Phys. Rev. A 75, 042307 (2007). [CrossRef]
- L. Derkacz and L. Jakobczyk, “Vacuum-induced stationary entanglement in radiatively coupled three-level atoms,” arXiv.org, arXiv:0710.5048 (2007).
- R. H. Lehmberg, “Radiation from n-atom system. I. General formulation,” Phys. Rev. A 2, 883-888 (1970). [CrossRef]
- G. S. Agarwal, in Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, edited by G.Hohler, Vol. 70 of Springer Tracts in Modern Physics (Springer-Verlag, 1974).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.