OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 2, Iss. 3 — Sep. 30, 2010

Photonic technologies for angular velocity sensing

Caterina Ciminelli, Francesco Dell'Olio, Carlo E. Campanella, and Mario N. Armenise  »View Author Affiliations


Advances in Optics and Photonics, Vol. 2, Issue 3, pp. 370-404 (2010)
http://dx.doi.org/10.1364/AOP.2.000370


View Full Text Article

Acrobat PDF (1501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonics for angular rate sensing is a well-established research field having very important industrial applications, especially in the field of strapdown inertial navigation. Recent advances in this research field are reviewed. Results obtained in the past years in the development of the ring laser gyroscope and the fiber optic gyroscope are presented. The role of integrated optics and photonic integrated circuit technology in the enhancement of gyroscope performance and compactness is broadly discussed. Architectures of new slow-light integrated angular rate sensors are described. Finally, photonic gyroscopes are compared with other solid-state gyros, showing their strengths and weaknesses.

© 2010 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics Devices

History
Original Manuscript: November 18, 2009
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 8, 2010
Published: June 2, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Caterina Ciminelli, Francesco Dell'Olio, Carlo E. Campanella, and Mario N. Armenise, "Photonic technologies for angular velocity sensing," Adv. Opt. Photon. 2, 370-404 (2010)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-2-3-370


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Titterton and J. Weston, Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, 2004).
  2. F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and Their Applications, D.Loukianov, R.Rodloff, H.Sorg, and B.Stieler, eds. (NATO Research and Technology Organization, 1999).
  3. H. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).
  4. P. G. Eliseev, “Theory of nonlinear Sagnac effect,” Opto-Electron. Rev. 16, 118-123 (2008). [CrossRef]
  5. C. Ciminelli, C. E. Campanella, F. Dell'Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973-2986 (2010). [CrossRef]
  6. J. Krebs, W. Maisch, G. Prinz, and D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179-1184 (1980). [CrossRef]
  7. D. A. Andrews and T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543-548 (1996). [CrossRef]
  8. F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, and H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161-168.
  9. J. Killpatrick, “Random bias for laser angular rate sensor,” U.S. patent 3,467,472, Sept. 16, 1969.
  10. W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918-936 (1980). [CrossRef]
  11. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006). [CrossRef]
  12. S. Schwartz, F. Gutty, J.-P. Pocholle, and G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).
  13. A. Siegman, Lasers (University Science Books, 1986).
  14. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008). [CrossRef]
  15. S. Schwartz, F. Gutty, G. Feugnet, and J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.
  16. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376-1379 (1980). [CrossRef]
  17. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476-1494 (2001). [CrossRef]
  18. M. N. Armenise, M. Armenise, V. M. N. Passaro, and F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).
  19. K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775-1776 (1998). [CrossRef]
  20. K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251-256 (2000). [CrossRef]
  21. M. Osiński, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144-147 (2006). [CrossRef]
  22. H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, and M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.
  23. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  24. J. Scheuer, “Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053-15059 (2007). [CrossRef]
  25. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401-403 (1986). [CrossRef]
  26. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644-646 (1983). [CrossRef]
  27. Y. Yi, K. Shi, W. Lu, and S. Jin, “Phase modulation spectroscopy using an all-fiber piezoelectric transducer modulator for a resonant fiber-optic gyroscope,” Appl. Opt. 34, 7383-7386 (1995). [CrossRef]
  28. J. L. Davis and S. Ezekiel, “Closed-loop, low-noise fiber-optic rotation sensor,” Opt. Lett. 6, 505-507 (1982). [CrossRef]
  29. C. C. Cutler, S. A. Newton, and H. J. Shaw, “Limitation of rotating sensing by scattering,” Opt. Lett. 5, 488-490 (1980). [CrossRef]
  30. H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169-3174 (2006). [CrossRef]
  31. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861-865 (2007). [CrossRef]
  32. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550-567 (1994). [CrossRef]
  33. R. A. Bergh, H. C. Lefèvre, and H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91-107 (1984). [CrossRef]
  34. T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, and T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.
  35. S. Divakaruni and S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper MC2.
  36. S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” App. Phys. Lett. 30, 478-480 (1977). [CrossRef]
  37. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26-27, 2009.
  38. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369-1372 (1994). [CrossRef]
  39. C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93-100 (2005). [CrossRef]
  40. C. Ciminelli, “Innovative photonic technologies for gyroscope systems,” presented at EOS Topical Meeting--Photonic Devices in Space, Paris, Oct. 18-19, 2006.
  41. C. Ciminelli, F. Peluso, E. Armandillo, and M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8-12, 2005.
  42. C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, and M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3-5, 2005.
  43. European Space Agency (ESA), IOLG project 1678/02/NL/PA, Final Report, Dec. 2008.
  44. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
  45. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658-2666 (2009). [CrossRef]
  46. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66-72 (2000). [CrossRef]
  47. H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006). [CrossRef]
  48. H. Ma, S. Wang, and Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509-2512 (2008).
  49. C. Ciminelli, C. E. Campanella, F. Dell'Olio, V. M. N. Passaro, and M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June 2-5, 2009.
  50. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24-31 (2008). [CrossRef]
  51. B. West, “Ion-exhanged glass waveguides,” in The Handbook of Photonics, M.Gupta and J.Ballato, eds. (CRC Press, 2007).
  52. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.
  53. G. Li, K. A. Winick, B. R. Youmans, and E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation's 60th Annual Meeting, Dayton, Ohio, 2004.
  54. A. Duwel and N. Barbour, “MEMS development at Draper Laboratory,” presented at SEM Annual Conference, Charlotte, N.C., June 2-4,2003.
  55. H. Hsiao and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783-17797 (2007). [CrossRef]
  56. J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider Jr., and R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20-25 (2009). [CrossRef]
  57. C. Ciminelli, F. Dell'Olio, V. M. N. Passaro, and M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1-6, 2009.
  58. C. Ciminelli, V. M. N. Passaro, F. Dell'Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009). [CrossRef]
  59. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
  60. J. E. Heebner, R. W. Boyd, and Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722-731 (2002). [CrossRef]
  61. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818-1832 (2004). [CrossRef]
  62. C. Peng, Z. Li, and A. Xu, “Rotating sensing based on slow light coupled resonator structure with EIT-like property,” Proc. SPIE 6722, 67222F (2007). [CrossRef]
  63. C. Peng, Z. Li, and A. Xu, “Rotation sensing based on a slow-light resonating structure with high group dispersion,” Appl. Opt. 46, 4125-4131 (2007). [CrossRef]
  64. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000). [CrossRef]
  65. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [CrossRef]
  66. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009). [CrossRef]
  67. Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848-5852 (2008). [CrossRef]
  68. C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864-3875 (2007). [CrossRef]
  69. B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24, 1216-1224 (2007). [CrossRef]
  70. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107-112 (2004). [CrossRef]
  71. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).
  72. F. Krauss, R. M. de la Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699-702 (1996). [CrossRef]
  73. M. Lončar and A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical Microcavities, E.Vahala ed. (World Scientific, 2004).
  74. O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275-285 (1999). [CrossRef]
  75. B. Z. Steinberg and A. Boag, “Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes,” J. Opt. Soc. Am. B 24, 142-151 (2007). [CrossRef]
  76. A. Shamir and B. Z. Steinberg, “On the electrodynamics of rotating crystals, micro-cavities, and slow-light structures: from asymptotic theories to exact Green's function based solutions,” in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 09) (IEEE, 2007), pp. 45-48.
  77. Honeywell, “HG1900 MEMS IMU,” http://www.honeywell.com
  78. R. Durrant, H. Crowle, J. Robertson, and S. Dussy, “SIREUS--status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2-5, 2008.
  79. M. F. Zaman, A. Sharma, Z. Hao, and F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526-1536 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited