OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 2, Iss. 4 — Dec. 31, 2010

Momentum of Light in a Dielectric Medium

Peter W. Milonni and Robert W. Boyd  »View Author Affiliations


Advances in Optics and Photonics, Vol. 2, Issue 4, pp. 519-553 (2010)
http://dx.doi.org/10.1364/AOP.2.000519


View Full Text Article

Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review different expressions that have been proposed for the stress tensor and for the linear momentum of light in dielectric media, focusing on the Abraham and Minkowski forms. Analyses of simple models and consideration of available experimental results support the interpretation of the Abraham momentum as the kinetic momentum of the field, while the Minkowski momentum is the recoil momentum of absorbing or emitting guest atoms in a host dielectric. Momentum conservation requires consideration not only of the momentum of the field and of recoiling guest atoms, but also of the momentum the field imparts to the medium. Different model assumptions with respect to electrostriction and the dipole force lead to different expressions for this momentum. We summarize recent work on the definition of the canonical momentum for the field in a dielectric medium.

© 2010 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Physical Optics

History
Original Manuscript: May 26, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 27, 2010
Published: September 10, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Peter W. Milonni and Robert W. Boyd, "Momentum of Light in a Dielectric Medium," Adv. Opt. Photon. 2, 519-553 (2010)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-2-4-519


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Clarendon, 1904), Vol. II, p. 441.
  2. W. Crookes, “On attraction and repulsion resulting from radiation,” Philos. Trans. R. Soc. London 164, 501–527 (1874). [CrossRef]
  3. S. G. Brush, “James Clerk Maxwell and the kinetic theory of gases: a review based on recent historical studies,” Am. J. Phys. 39, 631–640 (1971). [CrossRef]
  4. A. E. Woodruff, “William Crookes and the radiometer,” Isis 57, 188–198 (1966). [CrossRef]
  5. C. W. Draper, “The Crookes radiometer revisited. A centennial celebration,” J. Chem. Educ. 53, 356–357 (1976). [CrossRef]
  6. M. Scandurra, “Enhanced radiometric forces,” arXiv.org, arXiv:physics/0402011v1 (2004).
  7. N. Selden, C. Ngalande, N. Gimelshein, and A. Ketsdever, “Origins of radiometric forces on a circular vane with a temperature gradient,” J. Fluid Mech. 634, 419–431 (2009). [CrossRef]
  8. P. N. Lebedev, “Investigations on the pressure forces of light,” Ann. Phys. 6, 433–458 (1901). [CrossRef]
  9. E. F. Nichols and G. F. Hull, “The pressure due to radiation. (Second paper.),” Phys. Rev. 17, 26–50 (1903). [CrossRef]
  10. E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 57, 315–351 (1903). [CrossRef]
  11. W. Gerlach and A. Golsen, “Investigations with radiometers. II. A new measurement of the radiation pressure,” Z. Phys. 15, 1–7 (1923). [CrossRef]
  12. A. Einstein, “The theory of radiometers,” Ann. Phys. 374, 241–254 (1922). [CrossRef]
  13. A. Pais, Subtle is the Lord. The Science and the Life of Albert Einstein (Oxford Univ. Press, 1982), p. 408.
  14. A. Einstein, “On the quantum theory of radiation,” Phys. Z. 18, 121–128 (1917).
  15. For a discussion of this aspect of Einstein’s work see, for instance, P. W. Milonni, The Quantum Vacuum. An Introduction to Quantum Electrodynamics (Academic, 1994).
  16. O. Frisch, “Experimental detection of the Einstein recoil radiation,” Z. Phys. 86, 42–48 (1933). [CrossRef]
  17. J.-L. Piqué and J.-L. Vialle, “Atomic-beam deflection and broadening by recoils due to photon absorption or emission,” Opt. Commun. 5, 402–406 (1972). [CrossRef]
  18. D. V. Skobel’tsyn, “The momentum-energy tensor of the electromagnetic field,” Sov. Phys. Usp. 16, 381–401 (1973). [CrossRef]
  19. F. N. H. Robinson, “Electromagnetic stress and momentum in matter,” Phys. Rep. 16, 313–354 (1975). [CrossRef]
  20. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979). [CrossRef]
  21. R. Loudon, “Radiation pressure and momentum in dielectrics,” Fortschr. Phys. 52, 1134–1140 (2004). [CrossRef]
  22. P. Bowyer, “The momentum of light in media: the Abraham–Minkowski controversy,” http://www.peterbowyer.co.uk/purl/abraham-minkowski.
  23. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197–1216 (2007). [CrossRef]
  24. S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos. Trans. R. Soc. London Ser. A 368, 927–939 (2010). [CrossRef]
  25. C. Baxter and R. Loudon, “Radiation pressure and the photon momentum in dielectrics,” J. Mod. Opt. 57, 830–842 (2010).
  26. V. L. Ginzburg, Theoretical Physics and Astrophysics (Pergamon, 1960), p. 284.
  27. H. Minkowski, “The basic equations for electromagnetic processes in moving bodies,” Nachr. Ges. Wiss. Goettingen, Math. Phys. Kl. 53–111 (1908).
  28. H. Minkowski “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern,” Math. Ann. 68, 472–525 (1910). [CrossRef]
  29. M. Abraham, “On the electrodynamics of moving bodies,” Rend. Circ. Mat. Palermo 28, 1–28 (1909). [CrossRef]
  30. M. Abraham “On Minkowski’s electrodynamics,” Rend. Circ. Mat. Palermo 30, 33–46 (1910). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975), p. 240.
  32. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984), Eq. (75.17).
  33. Ref. , p. 285.
  34. Ref. , Eq. (75.18).
  35. L. P. Pitaevskii, “Why and when the Minkowskis stress tensor can be used in the problem of Casimir force acting on bodies embedded in media,” arXiv.org, arXiv:cond-mat/0505754v2 (2005).
  36. L. P. Pitaevksii, “Comment on ‘Casimir force acting on magnetodielectric bodies embedded in media’,” Phys. Rev. A 73, 047801 (2006). [CrossRef]
  37. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  38. Y. Gingras, “Mechanical forces acting within non-polar dielectric fluids,” Phys. Lett. 76A, 117–118 (1980).
  39. A. Einstein and J. Laub, “On the ponderomotive forces exerted on bodies at rest in the electromagnetic field,” Ann. Phys. 26, 541–550 (1908). [CrossRef]
  40. S. Walter, “Minkowski, mathematicians, and the mathematical theory of relativity,” in The Expanding Worlds of General Relativity, H.Goenner, ed. (Birkhäuser, 1999), pp. 45–86.
  41. R. Peierls, “The momentum of light in a refracting medium,” Proc. R. Soc. London Ser. A 347, 475–491 (1976). [CrossRef]
  42. R. Peierls, “The momentum of light in a refracting medium. II. Generalization. Application to oblique reflexion,” Proc. R. Soc. London Ser. A 355, 141–151 (1977). [CrossRef]
  43. Ref. , Eq. (80.12).
  44. J. C. Garrison and R. Y. Chiao, “Canonical and kinetic forms of the electromagnetic momentum in an ad hoc quantization scheme for a dispersive dielectric,”Phys. Rev. A 70, 053826 (2004). [CrossRef]
  45. P. W. Milonni, Fast Light, Slow Light, and Left-Handed Light (Institute of Physics, 2005), p. 185.
  46. B. Huttner, J. J. Baumberg, and S. M. Barnett, “Canonical quantization of light in a linear dielectric,” Europhys. Lett. 16, 177–182 (1991). [CrossRef]
  47. B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46, 4306–4322 (1992). [CrossRef]
  48. S. M. Barnett, “Resolution of the Abraham–Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010). [CrossRef]
  49. N. L. Balazs, “The energy-momentum tensor of the electromagnetic field inside matter,” Phys. Rev. 91, 408–411 (1953). [CrossRef]
  50. E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932). [CrossRef]
  51. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 53, 472–473 (1953). [CrossRef]
  52. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, 1962), p. 183.
  53. R. P. James, “A ‘simplest case’ experiment resolving the Abraham–Minkowksi controversy on electromagnetic momentum in matter,” Proc. Natl. Acad. Sci. U.S.A. 61, 1149–1150 (1968).
  54. G. B. Walker, D. G. Lahoz, and G. Walker, “Measurement of Abraham force in a barium-titanate specimen,” Can J. Phys. 53, 2577–2586 (1975).
  55. R. V. Jones and J. C. S. Richards, “The pressure of radiation in a refracting medium,” Proc. R. Soc. London Ser. A 221, 480–498 (1954). [CrossRef]
  56. R. V. Jones and B. Leslie, “Measurement of optical radiation pressure in dispersive media,” Proc. R. Soc. London Ser. A 360, 347–363 (1978). [CrossRef]
  57. R. V. Jones, “Radiation pressure of light in a dispersive medium,” Proc. R. Soc. London Ser. A 360, 365–371 (1977).
  58. J. H. Poynting, “Radiation pressure,” Phil. Mag. J. Sci. 9(52), 393–406 (1905).
  59. M. G. Burt and R. Peierls, “The momentum of a light wave in a refracting medium,” Proc. R. Soc. London Ser. A 333, 149–156 (1973).
  60. A. Ashkin and J. M. Dziedzic, “Radiation pressure on a free liquid surface,” Phys. Rev. Lett. 30, 139–142 (1973). [CrossRef]
  61. R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 821836 (2002).
  62. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, “Photon recoil momentum in dispersive media,” Phys. Rev. Lett. 94, 170403 (2005). [CrossRef]
  63. W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament fxerted by outgoing light,” Phys. Rev. Lett. 101, 243601 (2008). [CrossRef]
  64. I. Brevik, “Comment on ‘Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett. 103, 219301 (2009). [CrossRef]
  65. W. She, J. Yu, and R. Feng, “Reply to Comment by I. Brevik,” Phys. Rev. Lett. 103, 219302 (2009). [CrossRef]
  66. M. Mansuripur, “Comment on ‘observation of a push force on the end face of a nanometer silica filament exerted by outgoing light',” Phys. Rev. Lett. 103, 019301 (2009). [CrossRef]
  67. J. M. Hensley, A. Wicht, B. C. Young, and S. Chu, in Atomic Physics 17, A.Arimondo, P.DeNatale, and M.Inguscio, eds. (American Institute of Physics, 2001).
  68. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 1966), Sec. 1.5.
  69. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  70. M. P. Haugan and F. V. Kowalski, “Spectroscopy of atoms and molecules in gases: corrections to the Doppler-recoil shift,” Phys. Rev. A 25, 2102–2112 (1982). [CrossRef]
  71. P. W. Milonni and R. W. Boyd, “Recoil and photon momentum in a dielectric,” Laser Phys. 15, 1432–1438 (2005).
  72. D. H. Bradshaw, Z. Shi, R. W. Boyd, P. W. Milonni, “Electromagnetic momenta and forces in dispersive dielectric media,” Opt. Commun. 283, 650–656 (2010). [CrossRef]
  73. P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006). [CrossRef]
  74. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medinal, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef]
  75. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241–258 (2002). [CrossRef]
  76. D. F. Nelson, “Momentum, pseudomomentum and wave momentum: toward resolving the Minkowski–Abraham controversy,” Phys. Rev. A 44, 3985–3996 (1991). [CrossRef]
  77. H. Washimi and V. I. Karpman, “Ponderomotive force of a high-frequency electromagnetic field in a dispersive medium,” Sov. Phys. JETP 44, 528–534 (1976).
  78. Ref. , Eq. (81.13).
  79. R. Loudon, L. Allen, and D. F. Nelson, “Propagation of electromagnetic energy and momentum through an absorbing dielectric,” Phys. Rev. E 55, 1071–1085 (1997). [CrossRef]
  80. J. P. Gordon and A. Ashkin, “Motion of atoms in a radiation trap,” Phys. Rev. A 21, 1606–1617 (1980). [CrossRef]
  81. W. Shockley, “A ‘try simplest cases’ resolution of the Abraham–Minkowski controversy on electromagnetic momentum in matter,” Proc. Natl. Acad. Sci. U.S.A. 60, 807–813 (1968). [CrossRef]
  82. H. A. Haus, “Momentum, energy and power densities of TEM wave packet,” Physica (Amsterdam) 43, 77–91 (1969). [CrossRef]
  83. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004). [CrossRef]
  84. E. A. Hinds and S. M. Barnett, “Momentum exchange between light and a single atom: Abraham or Minkowski?,” Phys. Rev. Lett. 102, 050403 (2009). [CrossRef]
  85. S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited