OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 1 — Mar. 31, 2011

Four-wave mixing microscopy of nanostructures

Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan, and Eric O. Potma  »View Author Affiliations


Advances in Optics and Photonics, Vol. 3, Issue 1, pp. 1-52 (2011)
http://dx.doi.org/10.1364/AOP.3.000001


View Full Text Article

Acrobat PDF (2040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The basics of four-wave mixing (FWM) and recent advances in FWM microscopy are reviewed with a particular emphasis on applications in the field of nanomaterials. The vast progress in nanostructure synthesis has triggered a need for advanced analytical tools suitable to interrogate nanostructures one at a time. The single-nanostructure sensitivity of optical microscopy has solidified the optical approach as a reliable technique for examining the electronic structure of materials at the nanoscale. By zooming in on the individual, optical microscopy has permitted detailed investigations of the linear optical response of nanomaterials such as semiconducting quantum dots and plasmon active nanometals. Besides studying the linear optical properties of nanostructures, optical microscopy has also been used to probe the nonlinear optical properties of nanoscale materials. FWM microscopy, a coherent third-order optical imaging technique, has shown great potential as a tool for investigating the nonlinear optical response of nanostructures. FWM microscopy not only permits the characterization of the nonlinear susceptibility of individual nanostructures, it also offers a route to explore the time-resolved dynamics of electronic and vibrational excitations on single structures. In addition, FWM produces strong signals from nanomaterials that are compatible with fast imaging applications, which holds promise for biological imaging studies based on nanoparticle labels that are not prone to photobleaching.

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(160.4236) Materials : Nanomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 6, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 27, 2010
Published: September 10, 2010

Virtual Issues
(2011) Advances in Optics and Photonics

Citation
Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan, and Eric O. Potma, "Four-wave mixing microscopy of nanostructures," Adv. Opt. Photon. 3, 1-52 (2011)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-3-1-1


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A.Rogach, ed., Semiconductor Nanocrystal Quantum Dots (Springer, 2008).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. Lord Rayleigh, “On the theory of optical images with special reference to the microscope,” Philos. Mag. 5, 167–195 (1896).
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef]
  5. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef]
  7. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004). [CrossRef]
  8. K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122, 154701–154705 (2005). [CrossRef]
  9. Q. Xu, J. Bao, F. Capasso, and G. M. Whitesides, “Surface plasmon resonances of free-standing gold nanowires fabricated using nanoskiving,” Angew. Chem. Int. Ed. 45, 3631–3635 (2006). [CrossRef]
  10. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef]
  11. P. Michler, A. Imamo, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef]
  12. K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo, and M. G. Bawendi, “Blinking statistics in single semiconductor nanocrystal quantum dots,” Phys. Rev. B 63, 205316 (2001). [CrossRef]
  13. R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. Schiffrin, “Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air-toluene interface,” Chem. Commun. 1997(19), 1901–1902 (1997). [CrossRef]
  14. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  15. M. Lippitz, M. A. v. Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005). [CrossRef]
  16. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003). [CrossRef]
  17. X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. (Washington, D.C.) 106, 1785–1813 (2006).
  18. F. Masia, W. Langbein, and P. Borri, “Multiphoton microscopy based on four-wave mixing of colloidal quantum dots,” Appl. Phys. Lett. 93, 021114 (2008). [CrossRef]
  19. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982). [CrossRef]
  20. A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  21. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965). [CrossRef]
  22. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108, 827–840 (2004). [CrossRef]
  23. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  24. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D 38, R59–R81 (2005). [CrossRef]
  25. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007). [CrossRef]
  26. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef]
  27. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, “Femtosecond dynamics of intracellular water probed with nonlinear Kerr effect microspectroscopy,” Biophys. J. 80, 3019–3024 (2001). [CrossRef]
  28. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  29. S. A. J. Druet and J. P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981). [CrossRef]
  30. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748–1755 (1976). [CrossRef]
  31. S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18, 1529–1557 (1978). [CrossRef]
  32. R. T. Lynch and H. Lotem, “Two-photon absorption measurements in organic liquids via nonlinear light mixing spectroscopy,” J. Chem. Phys. 66, 1905–1913 (1977). [CrossRef]
  33. S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Nonlinear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), pp. 253–297.
  34. T. Fujii, A. Kamata, M. Shimizu, Y. Adachi, and S. Maeda, “Two-photon absorption study of 1,3,5-hexatriene by CARS and CSRS,” Chem. Phys. Lett. 115, 369–372 (1985). [CrossRef]
  35. M. L. Shand and R. R. Chance, “Third-order nonlinear mixing in polydiacetylene solutions,” J. Chem. Phys. 69, 4482–4486 (1978). [CrossRef]
  36. X. Liu, W. Rudolph, and J. L. Thomas, “Photobleaching resistance of stimulated parametric emission in microscopy,” Opt. Lett. 34, 304–306 (2009). [CrossRef]
  37. X. Liu, W. Rudolph, and J. L. Thomas, “Characterization and application of femtosecond infrared stimulated parametric emission microscopy,” J. Opt. Soc. Am. B 27, 787–795 (2010). [CrossRef]
  38. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express 14, 786–793 (2006). [CrossRef]
  39. H. M. Dang, G. Omura, T. Umano, M. Yamagiwa, S. Kajiyama, Y. Ozeki, K. Itoh, and K. Fukui, “Label-free imaging by stimulated parametric emission microscopy reveals a differnce in hemoglobin distribution between live and fixed erythrocytes,” J. Biomed. Opt. 14, 040506 (2009). [CrossRef]
  40. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974). [CrossRef]
  41. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” in Prog. Quantum Electron., J.H.Sanders and S.Stenholm, eds. (Pergamon, 1977), pp. 1–68.
  42. L. Li, H. Wang, and J. X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89, 3480–3490 (2005). [CrossRef]
  43. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003). [CrossRef]
  44. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005). [CrossRef]
  45. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 108, 1296–1301 (2004). [CrossRef]
  46. A. Voroshilov, G. W. Lucassen, C. Otto, and J. Greve, “Polarization-sensitive resonance CSRS of deoxy- and oxyheamoglobin,” J. Raman Spectrosc. 26, 443–450 (1995). [CrossRef]
  47. A. Voroshilov, C. Otto, and J. Greve, “On the coherent vibrational phase in polarization sensitive resonance CARS spectroscopy of copper tetraphenylporphyrin,” J. Chem. Phys. 106, 2589–2598 (1997). [CrossRef]
  48. L. A. Carreira, T. C. Maguire, and T. B. Malloy, “Excitation profiles of the coherent anti-Stokes resonance Raman spectrum of β-carotene,” J. Chem. Phys. 66, 2621–2626 (1977). [CrossRef]
  49. W. Min, S. Lu, G. R. Holtom, and X. S. Xie, “Triple-resonance coherent anti-Stokes Raman scattering microspectroscopy,” ChemPhysChem 10, 344–347 (2009). [CrossRef]
  50. R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979). [CrossRef]
  51. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647–653 (1983). [CrossRef]
  52. N. Bloembergen, W. K. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969). [CrossRef]
  53. W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry.,” Phys. Rev. B 4, 3437–3450 (1971). [CrossRef]
  54. J. J. Wynne, “Optical third-order mixing in GaAS, Ge, Si and InAs,” Phys. Rev. 178, 1295–1303 (1969). [CrossRef]
  55. F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32, 2352–2363 (1985). [CrossRef]
  56. G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983). [CrossRef]
  57. R. Barille, L. Canioni, L. Sager, and G. Rivoire, “Nonlinearity measurements of thin films by third harmonic generation microscopy,” Phys. Rev. E 66, 067602 (2002). [CrossRef]
  58. V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, “Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface,” Appl. Phys. Lett. 82, 3982–3984 (2003). [CrossRef]
  59. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994). [CrossRef]
  60. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  61. R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112, 5834–5848 (2008). [CrossRef]
  62. D. L. Mills, Nonlinear Optics (Springer-Verlag, 1991).
  63. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  64. D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J. 92, 603–612 (2007). [CrossRef]
  65. U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order harmonic nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000). [CrossRef]
  66. G. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order susceptibility determination by third harmonic generation. II,” J. Chem. Phys. 78, 1543–1551 (1983). [CrossRef]
  67. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010). [CrossRef]
  68. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  69. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
  70. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett. 26, 485–487 (2001). [CrossRef]
  71. L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris 110, 1251–1253 (1890).
  72. G. C. Bjorklund, “Effects of focusing on the third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. QE-11, 287–296 (1975). [CrossRef]
  73. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  74. E. O. Potma, W. P. d. Boeij, and D. A. Wiersma, “Nonlinear coherent four-wave mixing in optical microscopy,” J. Opt. Soc. Am. B 17, 1678–1684 (2000). [CrossRef]
  75. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002). [CrossRef]
  76. D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15, 8913–8924 (2007). [CrossRef]
  77. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  78. S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, C. K. Sun, and B. L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1911 (2001). [CrossRef]
  79. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt. 38, 7393–7397 (1999). [CrossRef]
  80. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  81. Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009). [CrossRef]
  82. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008). [CrossRef]
  83. F. Masia, W. Langbein, P. Watson, and P. Borri, “Resonant four-wave-mixing of gold nanoparticles for three-dimensional cell microscopy,” Opt. Lett. 34, 1816–1818 (2009). [CrossRef]
  84. Y. Zheng, G. Holtom, and S. Colson, “Multichannel multiphoton imaging of metal oxides nanoparticles in biological systems,” Proc. SPIE 5323, 390–399 (2004). [CrossRef]
  85. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27, 1168–1170 (2002). [CrossRef]
  86. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006). [CrossRef]
  87. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef]
  88. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29, 2701–2703 (2004). [CrossRef]
  89. S. H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Phys. Rev. A 72, 041803 (2005). [CrossRef]
  90. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009). [CrossRef]
  91. R. Hellwarth, J. Cherlow, and T. T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975). [CrossRef]
  92. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr effect studies on the origin of nonlinear optical response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988). [CrossRef]
  93. K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave-mixing microscopy,” Appl. Phys. Express 1, 022006 (2008). [CrossRef]
  94. D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarcea, B. Dietzek, M. Schmitt, and J. Popp, “Different contrast information obtained from CARS and nonresonant FWM images,” J. Raman Spectrosc. 40, 941–947 (2009). [CrossRef]
  95. B. C. Chen and S. H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave-mixing microscopy,” Appl. Phys. Lett. 94, 171911 (2009). [CrossRef]
  96. A. G. Aronov, D. E. Pikus, and D. Shekter, “Quantum theory of free-electron dielectric constant in semiconductors,” Sov. Phys. Solid State 10, 645–647 (1968).
  97. L. Bányai and S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986). [CrossRef]
  98. H.Haug, ed., Optical Nonlinearities and Instabilities in Semiconductors (Academic, 1988).
  99. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 1990).
  100. H. M. Gibbs, S. L. McCall, T. N. C. Vankatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979). [CrossRef]
  101. V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980). [CrossRef]
  102. R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982). [CrossRef]
  103. E. W. Van Stryland, M. W. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy bandgap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef]
  104. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987). [CrossRef]
  105. L. Brus, “Quantum crystallites and nonlinear optics,” Appl. Phys. B 53, 465–474 (1991).
  106. L. I. Berger, “Properties of Semiconductors,” in CRC Handbook of Chemistry and Physics, 90th ed., D.R.Lide, ed. (Taylor & Francis, 2009).
  107. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 72, 1296–1309 (1991). [CrossRef]
  108. S. Vijayalakshmi, M. A. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997). [CrossRef]
  109. G. Vijaya-Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzó, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002). [CrossRef]
  110. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78, 2214–2216 (2001). [CrossRef]
  111. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett. 4, 433–436 (2004). [CrossRef]
  112. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997). [CrossRef]
  113. J. H. Park, L. Gu, G. V. Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nature Mater. 8, 331–336 (2009). [CrossRef]
  114. R. Chen, D. L. Lin, and D. Mendoza, “Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires,” Phys. Rev. B 48, 11879–11882 (1993). [CrossRef]
  115. Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009). [CrossRef]
  116. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and M. Yasuaki, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991). [CrossRef]
  117. Q. Wan, C. L. Lin, N. L. Zhang, W. L. Liu, G. Yang, and T. H. Wang, “Linear and third-order nonlinear optical absorption of amorphous Ge nanoclusters embedded in Al2O3 matrix synthesized by electron-beam coevaporation,” Appl. Phys. Lett. 82, 3162–3164 (2003). [CrossRef]
  118. R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272, 242–246 (2006). [CrossRef]
  119. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61, 2187–2189 (1992). [CrossRef]
  120. L. Balan, R. Schneider, D. Billaud, and J. Ghanbaja, “A new organicmetallic synthesis of size-controlled tin(0) nanoparticles,” Nanotechnology 16, 1153–1158 (2005). [CrossRef]
  121. D. H. Webber and R. L. Brutchey, “Photolytic preparation of tellurium nanorods,” Chem. Commun. (Cambridge) , 5701–5703 (2009). [CrossRef]
  122. S.-H. Kim and T. Yoko, "Nonlinear optical properties of TiO2-based glasses: MOx–TiO2 (M = Sc, Ti, V, Nb, Mo, Ta and W) binary glasses," J. Am. Ceram. Soc. 78, 1061–1065 (1995). [CrossRef]
  123. W. E. Torruellas, L. A. Weller-Brophy, R. Zanoni, G. I. Stegeman, Z. Osborne, and B. J. J. Zelinski, “Third-harmonic generation measurement of nonlinearities in SiO2-TiO2 sol-gel films,” Appl. Phys. Lett. 58, 1128–1130 (1991). [CrossRef]
  124. T. Hashimoto, T. Yamada, and T. Yoko, “Third order nonlinear optical properties of sol-gel derived α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films.,” J. Appl. Phys. 80, 3184–3190 (1996). [CrossRef]
  125. R. Desalvo, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  126. T. Hashimoto, T. Yoko, and S. Sakka, “Third-order nonlinear optical susceptibility of α-Fe2O3 thin film prepared by the sol-gel method,” J. Ceram. Soc. Jpn. 101, 64–68 (1993).
  127. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994). [CrossRef]
  128. L. J. Li, K. Yu, and Y. Wang, “Synthesis and field emission of SnO2 nanowalls,” Cryst. Res. Technol. 44, 1245–1248 (2009). [CrossRef]
  129. N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. Kubodera, “Third-order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59, 502–503 (1991). [CrossRef]
  130. A. Walsh, J. L. F. DaSilva, S. Wei, C. Korber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. E. Egdell, “Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy,” Phys. Rev. Lett. 100, 167402 (2008). [CrossRef]
  131. S. Kim, T. Yoko, and S. Sakka, “Linear and nonlinear optical properties of TeO2 glass,” J. Am. Ceram. Soc. 76, 2486–2490 (1993). [CrossRef]
  132. M. Larciprete, D. Heartle, A. Berladini, M. Bertolotto, F. Sarto, and P. Günter, “Characterization of second and third-order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006). [CrossRef]
  133. T. Hashimoto and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived V2O5, Nb2O5 and Ta2O3 thin films,” Appl. Opt. 34, 2941–2948 (1995). [CrossRef]
  134. J.-H. Lin, Y.-J. Chen, H.-Y. Lin, and W.-F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys. 97, 033526 (2005). [CrossRef]
  135. S. P. Kowalczyk, F. R. McFeely, L. Ley, V. T. Gritsyna, and D. A. Shirley, “The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2),” Solid State Commun. 23, 161–169 (1977). [CrossRef]
  136. S. Tsunekawa, J. T. Wang, Y. Kawazoe, and A. Kasuya, “Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites,” J. Appl. Phys. 94, 3654–3656 (2003). [CrossRef]
  137. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002). [CrossRef]
  138. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17, 1282–1290 (2009). [CrossRef]
  139. J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16, 3408–3419 (2008). [CrossRef]
  140. B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E (Amsterdam) 8, 360–364 (2000). [CrossRef]
  141. K. C. Rustagi and C. Flytzanis, “Optical nonlinearities in semiconductor-doped glasses,” Opt. Lett. 9, 344–346 (1984). [CrossRef]
  142. D. Ricard, P. Roussignol, F. Hache, and C. Flytzanis, “Nonlinear optical properties of quantum confined semiconductor microcrystallites,” Phys. Status Solidi B 159, 275–284 (1990). [CrossRef]
  143. I. Gerdova and A. Haché, “Third-order nonlinear spectroscopy of CdSe and CdSe∕ZnS core shell quantum dots,” Opt. Commun. 246, 205–212 (2004). [CrossRef]
  144. G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998). [CrossRef]
  145. J. Shah, Ultrafast Processes in Semiconductors and Semiconductor Nanostructures (Springer, 1996).
  146. N. H. Bonadeo, G. Chen, D. Gammon, D. S. Katzer, D. Park, and D. G. Steel, “Nonlinear nano-optics: probing one exciton at the time,” Phys. Rev. Lett. 81, 2759–2762 (1998). [CrossRef]
  147. T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V. M. Axt, T. Kuhn, S. Eshlaghi, and A. D. Wieck, “Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy,” Phys. Rev. Lett. 89, 057401 (2002). [CrossRef]
  148. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000). [CrossRef]
  149. S. Adachi, Properties of Group IV, III–V and II–VI Semiconductors (Wiley, 2005).
  150. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminscent quantum dots for multiplexed biological detection and imaging,” Curr. Opin. Biotechnol. 13, 40–46 (2002). [CrossRef]
  151. A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7, 55–76 (2005). [CrossRef]
  152. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54, 8627–8632 (1996). [CrossRef]
  153. L. A. Padilha, J. Hu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. Barboza, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Express 13, 6460–6467 (2005). [CrossRef]
  154. L. A. Padhilla, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, “Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75, 075325 (2007). [CrossRef]
  155. S. C. Kung, W. E. v. d. Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 μs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10, 1481–1485 (2010).
  156. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86, 6200–6205 (1999). [CrossRef]
  157. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985). [CrossRef]
  158. M.L.Brongersma and P.G.Kik, eds., Surface Plasmon Nanophotonics (Springer, 2007).
  159. V.M.Agranovich and D.L.Mills, eds., Surface Polaritons—Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  160. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 241, 820–822 (1968).
  161. E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  162. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007). [CrossRef]
  163. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007). [CrossRef]
  164. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33, 1531–1534 (1974). [CrossRef]
  165. H. J. Simon, R. E. Benner, and J. G. Rako, “Optical second harmonic generation with surface plasmons in piezoelectric crystals,” Opt. Commun. 23, 245–248 (1977). [CrossRef]
  166. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave-mixing,” Phys. Rev. Lett. 101, 056802 (2008). [CrossRef]
  167. F. De Martini and Y. R. Shen, “Nonlinear excitations of surface polaritons,” Phys. Rev. Lett. 36, 216–219 (1976). [CrossRef]
  168. F. De Martini, G. Giuliani, P. Mataloni, E. Palange, and Y. R. Shen, “Study of surface polaritons in GaP by optical four-wave-mixing,” Phys. Rev. Lett. 37, 440–443 (1976). [CrossRef]
  169. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979). [CrossRef]
  170. T. Y. F. Tsang, “Surface-plasmon-enhanced third-harmonic generation in thin silver films,” Opt. Lett. 21, 245–247 (1996). [CrossRef]
  171. J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]
  172. J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef]
  173. G. Mie, “A contribution to the optics of turbid media, particularly of coloidal metallic suspensions,” Ann. Phys. 25, 377–452 (1908). [CrossRef]
  174. K. Lance-Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  175. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006). [CrossRef]
  176. A. Jara, R. E. Arias, and D. L. Mills, “Plasmon and the electromagnetic respons of nanowires,” Phys. Rev. B 81, 085422 (2010). [CrossRef]
  177. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite Difference Time-Domain Method (Artech House, 2000).
  178. J. C. Maxwell-Garnett, “Colours in metal glasses and in metal films,” Philos. Trans. R. Soc. London 203, 385 (1904). [CrossRef]
  179. D. S. Chemla, J. P. Heritage, P. F. Liao, and E. D. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B 27, 4553–4558 (1983). [CrossRef]
  180. L. Genzel, T. P. Martin, and U. Kreibig, “Dielectric function and plasma resonances of small metal particles,” Z. Phys. B 21, 339–346 (1975). [CrossRef]
  181. U. Kreibig and C. V. Fragstein, “The limitation of mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969). [CrossRef]
  182. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988). [CrossRef]
  183. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave-mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B 7, 790–795 (1990). [CrossRef]
  184. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994). [CrossRef]
  185. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11, 114030 (2009). [CrossRef]
  186. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986). [CrossRef]
  187. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003). [CrossRef]
  188. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005). [CrossRef]
  189. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102, 15752–15756 (2005). [CrossRef]
  190. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–525 (1984). [CrossRef]
  191. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980). [CrossRef]
  192. P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76, 751–752 (1982). [CrossRef]
  193. K. Kneipp, R. R. Dasari, and Y. Wang, “Near-infrared surface-enhances Raman scattering (NIR SERS) on colloidal silver and gold,” Appl. Spectrosc. 48, 951–955 (1994). [CrossRef]
  194. P. C. Lee and D. Meisel, “Absorption and surface-enhanced Raman of dyes on silver an gold sols,” J. Phys. Chem. 86, 3391–3395 (1982). [CrossRef]
  195. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  196. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  197. A. Otto, I. Mrozek, H. Grabborn, and A. Akermann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143–1212 (1992). [CrossRef]
  198. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001). [CrossRef]
  199. J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979). [CrossRef]
  200. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002). [CrossRef]
  201. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15, 15207–15213 (2007). [CrossRef]
  202. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006). [CrossRef]
  203. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999). [CrossRef]
  204. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000). [CrossRef]
  205. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]
  206. T. W. Koo, S. Chan, and A. A. Berlin, “Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 30, 1024–1026 (2005). [CrossRef]
  207. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003). [CrossRef]
  208. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004). [CrossRef]
  209. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, 1997).
  210. H. Nakanishi and H. Katagi, “Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties,” Supramol. Sci. 5, 289–295 (1998). [CrossRef]
  211. H. B. Fu and J. N. Yao, “Size effects on the optical properties of organic nanoparticles,” J. Am. Chem. Soc. 123, 1434–1439 (2001). [CrossRef]
  212. H.Masuhara, H.Nakanishi, and K.Sasaki, eds., Single Organic Nanoparticles (Springer-Verlag, 2003).
  213. S. M. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997). [CrossRef]
  214. T. Plakhotnik, E. A. Donley, and U. P. Wild, “Single-molecule spectroscopy,” Annu. Rev. Phys. Chem. 48, 181–212 (1997). [CrossRef]
  215. W. E. Moerner, “High-resolution optical spectroscopy of single molecules in solids,” Acc. Chem. Res. 29, 563–571 (1996). [CrossRef]
  216. X. S. Xie, “Single molecule approach to enzymology,” Single Mol. 2, 229–236 (2001). [CrossRef]
  217. X. S. Xie, “Single-molecule approach to dispersed kinetics and dynamic disorder: probing conformational fluctuation and enzymatic dynamics,” J. Chem. Phys. 117, 11024–11032 (2002). [CrossRef]
  218. S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol. 7, 724–729 (2000). [CrossRef]
  219. E. M. H. P. van Dijk, J. Hernando, J. J. García-López, M. Crego-Calama, D. N. Reinhoudt, L. Kuipers, M. F. García-Parajó, and N. F. van Hulst, “Single-molecule pump–probe detection resolves ultrafast pathways in individual quantum coupled systems,” Phys. Rev. Lett. 94, 078302 (2005). [CrossRef]
  220. W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426 (2009). [CrossRef]
  221. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial, 1998).
  222. J. S. Lauret, C. Voisin, G. Cassabois, J. Tignon, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime,” Appl. Phys. Lett. 85, 3572–3574 (2004). [CrossRef]
  223. S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378, 117–121 (2003). [CrossRef]
  224. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett. 74, 164–166 (1999). [CrossRef]
  225. H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009). [CrossRef]
  226. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast carrier dynamics in single-wall carbon nanotubes,” Phys. Rev. Lett. 90, 057404 (2003). [CrossRef]
  227. C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, and G. Cerullo, “Intersubband exciton relaxation dynamics in single-walled carbon nanotubes,” Phys. Rev. Lett. 94, 207401 (2005). [CrossRef]
  228. H. Y. Seferyan, M. B. Nasr, V. Senekerimyam, R. Zadoyan, P. Collins, and V. A. Apkarian, “Transient grating measurements of excitonic dynamics in single walled carbon nanotubes: the dark excitonic bottleneck,” Nano Lett. 6, 1757–1760 (2006). [CrossRef]
  229. L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93, 017403 (2004). [CrossRef]
  230. C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few and many molecules: nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008). [CrossRef]
  231. O. Roslyak, C. Marx, and S. Mukamel, “Generalized Kramers–Heisenberg expressions for stimulated Raman scattering and two-photon absorption,” Phys. Rev. A 79, 063827 (2009). [CrossRef]
  232. R. Ranav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107, 4825–4829 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited