OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 1 — Mar. 31, 2011

Intersubband approach to silicon based lasers—circumventing the indirect bandgap limitation

Greg Sun  »View Author Affiliations

Advances in Optics and Photonics, Vol. 3, Issue 1, pp. 53-87 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon-based lasers have long been sought, since they will permit monolithic integration of photonics with high-speed silicon electronics and thereby significantly broaden the reach of silicon technology. Among the various approaches that are currently being pursued to overcome the intrinsic limitations of Si as an efficient light source, intersubband transitions in Si-based quantum well structures offer a rather feasible alternative that conveniently circumvents the indirect-band nature of Si. Various approaches for achieving lasing action based on intersubband transitions within the group-IV materials are reviewed. Relevant theories are presented in detail. Challenges facing the valence band approach, which has not so far been successful, are analyzed, and proposals that bring the intersubband process to the conduction band are discussed.

© 2010 Optical Society of America

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 23, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: July 28, 2010
Published: September 10, 2010

Virtual Issues
(2011) Advances in Optics and Photonics

Greg Sun, "Intersubband approach to silicon based lasers—circumventing the indirect bandgap limitation," Adv. Opt. Photon. 3, 53-87 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986). [CrossRef]
  2. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000). [CrossRef] [PubMed]
  4. J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003). [CrossRef]
  5. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004). [CrossRef]
  6. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  7. G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997). [CrossRef]
  8. F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998). [CrossRef]
  9. A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994). [CrossRef]
  10. M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.
  11. R. Calps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, “Observation of stimulated Raman scattering in silicon waveguides,” Opt. Express 11, 1731–1739 (2003). [CrossRef]
  12. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004). [CrossRef] [PubMed]
  13. O. Boyraz, B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef] [PubMed]
  14. B. Jalali, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  15. H. Park, A. W. Fang, S. Kodama, J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells,” Opt. Express 13, 9460–9464 (2005). [CrossRef] [PubMed]
  16. J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005). [CrossRef]
  17. Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005). [CrossRef]
  18. L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970). [CrossRef]
  19. R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
  20. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  21. G. Sun, J. B. Khurgin, “Feasibility of optically pumped four-level infrared lasers,” in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, 1992), pp. 219–226. [CrossRef]
  22. G. SunKhurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. QE-29, 1104–1111 (1993). [CrossRef]
  23. D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007). [CrossRef]
  24. M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007). [CrossRef]
  25. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001). [CrossRef]
  26. Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008). [CrossRef]
  27. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  28. B. S. Williams, “Tereahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007). [CrossRef]
  29. S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981). [CrossRef]
  30. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1, 249–261 (1957). [CrossRef]
  31. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, 1998), Chap. 3.
  32. J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955). [CrossRef]
  33. J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956). [CrossRef]
  34. G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  35. G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998). [CrossRef]
  36. L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993). [CrossRef]
  37. L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985). [CrossRef]
  38. G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995). [CrossRef]
  39. B. K. Ridley, “The electron–phonon interaction in quasi-two-dimensional semiconductor quantum-well structures,” J. Phys. C 15, 5899–5917 (1982). [CrossRef]
  40. P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Ann. Phys. 133, 217–239 (1981). [CrossRef]
  41. P. Harrison, Quantum Wells, Wires, and Dots (Wiley, 2000), p. 272.
  42. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004). [CrossRef]
  43. R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989). [CrossRef]
  44. M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999). [CrossRef]
  45. J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (CRC Press, 2008).
  46. L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998). [CrossRef]
  47. L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998). [CrossRef]
  48. D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008). [CrossRef]
  49. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996). [CrossRef] [PubMed]
  50. L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001). [CrossRef]
  51. R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001). [CrossRef]
  52. A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989). [CrossRef]
  53. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000). [CrossRef] [PubMed]
  54. I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002). [CrossRef]
  55. S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002). [CrossRef]
  56. R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003). [CrossRef]
  57. J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001). [CrossRef]
  58. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003). [CrossRef]
  59. L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002). [CrossRef]
  60. D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008). [CrossRef]
  61. L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008). [CrossRef]
  62. K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006). [CrossRef]
  63. R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991). [CrossRef]
  64. D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987). [CrossRef]
  65. G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997). [CrossRef]
  66. J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).
  67. M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).
  68. R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).
  69. P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).
  70. M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).
  71. G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).
  72. M. Jaros, “Simple analytic model for heterojunction band offsets,” Appl. Phys. Lett. 37, 7112–7114 (1988).
  73. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Appl. Phys. Lett. 39, 1871–1883 (1989).
  74. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006). [CrossRef]
  75. V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006). [CrossRef]
  76. J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989). [CrossRef]
  77. M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966). [CrossRef]
  78. B. K. Ridley, Electrons and Phonons in Semiconductor Multiplayers (Cambridge University Press, 1997), Chap. 1.
  79. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003). [CrossRef]
  80. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002). [CrossRef]
  81. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited