OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 1 — Mar. 31, 2011

Modes of random lasers

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste  »View Author Affiliations


Advances in Optics and Photonics, Vol. 3, Issue 1, pp. 88-127 (2011)
http://dx.doi.org/10.1364/AOP.3.000088


View Full Text Article

Acrobat PDF (1778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In conventional lasers, the optical cavity that confines the photons also determines essential characteristics of the lasing modes such as wavelength, emission pattern, directivity, and polarization. In random lasers, which do not have mirrors or a well-defined cavity, light is confined within the gain medium by means of multiple scattering. The sharp peaks in the emission spectra of semiconductor powders, first observed in 1999, has therefore lead to an intense debate about the nature of the lasing modes in these so-called lasers with resonant feedback. We review numerical and theoretical studies aimed at clarifying the nature of the lasing modes in disordered scattering systems with gain. The past decade has witnessed the emergence of the idea that even the low-Q resonances of such open systems could play a role similar to the cavity modes of a conventional laser and produce sharp lasing peaks. We focus here on the near-threshold single-mode lasing regime where nonlinear effects associated with gain saturation and mode competition can be neglected. We discuss in particular the link between random laser modes near threshold and the resonances or quasi-bound (QB) states of the passive system without gain. For random lasers in the localized (strong scattering) regime, QB states and threshold lasing modes were found to be nearly identical within the scattering medium. These studies were later extended to the case of more lossy systems such as random systems in the diffusive regime, where it was observed that increasing the openness of such systems eventually resulted in measurable and increasing differences between quasi-bound states and lasing modes. Very recently, a theory able to treat lasers with arbitrarily complex and open cavities such as random lasers established that the threshold lasing modes are in fact distinct from QB states of the passive system and are better described in terms of a new class of states, the so-called constant-flux states. The correspondence between QB states and lasing modes is found to improve in the strong scattering limit, confirming the validity of initial work in the strong scattering limit.

© 2011 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(290.4210) Scattering : Multiple scattering
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 21, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 6, 2010
Published: October 1, 2010

Virtual Issues
(2011) Advances in Optics and Photonics

Citation
J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, "Modes of random lasers," Adv. Opt. Photon. 3, 88-127 (2011)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-3-1-88

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (495 KB)      QuickTime
» Media 2: MOV (602 KB)      QuickTime
» Media 3: MOV (2073 KB)      QuickTime
» Media 4: MOV (2620 KB)      QuickTime

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited