OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 4 — Dec. 31, 2011

Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties

Xiuling Li  »View Author Affiliations

Advances in Optics and Photonics, Vol. 3, Issue 4, pp. 366-387 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strain-induced self-rolled-up microtubes, a category of recently discovered tubular structure with ultrathin walls, have been demonstrated to be unique ring resonators. Recent development in their geometrical and resonant properties are reviewed.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Optical Devices

Original Manuscript: June 10, 2011
Revised Manuscript: November 1, 2011
Manuscript Accepted: November 1, 2011
Published: December 5, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

Xiuling Li, "Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties," Adv. Opt. Photon. 3, 366-387 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424, (6950), 839‒846 (2003). [CrossRef] [PubMed]
  2. T. Ling and L. J. Guo, "Analysis of the sensing properties of silica microtube resonator sensors," J. Opt. Soc. Am. B 26, (3), 471‒477 (2009). [CrossRef]
  3. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000). [CrossRef]
  4. R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007). [CrossRef]
  5. F. Li and Z. Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, (22), 19933‒19939 (2009). [CrossRef] [PubMed]
  6. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006). [CrossRef] [PubMed]
  7. V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009). [CrossRef] [PubMed]
  8. X. Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D Appl. Phys. 41, (19), 193001 (2008). [CrossRef]
  9. I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).
  10. O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002). [CrossRef]
  11. T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.
  12. Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).
  13. S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007). [CrossRef]
  14. V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009). [CrossRef]
  15. M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011). [CrossRef] [PubMed]
  16. R. Stevenson, "Tube lasers prepare to light up silicon circuits," 2009, http://compoundsemiconductor.net/csc/features-details/19498536/Tube-lasers-prepare-to-light-up-silicon-circuit.html
  17. I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010). [CrossRef] [PubMed]
  18. I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008). [CrossRef]
  19. S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001). [CrossRef]
  20. P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.
  21. Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009). [CrossRef] [PubMed]
  22. M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011). [CrossRef]
  23. Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008). [CrossRef]
  24. W. Chern, H.-K. Tsai, and X. Li, unpublished
  25. W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010). [CrossRef] [PubMed]
  26. E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009). [CrossRef]
  27. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010). [CrossRef] [PubMed]
  28. S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009). [CrossRef] [PubMed]
  29. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011). [CrossRef] [PubMed]
  30. I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010). [CrossRef]
  31. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).
  32. A. Challa, "Engineering strain-induced self-rolling semiconductor tubes through geometry and patterning," 2010, http://hdl.handle.net/2142/16181.
  33. X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000). [CrossRef]
  34. I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008). [CrossRef]
  35. P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011). [CrossRef] [PubMed]
  36. Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010). [CrossRef]
  37. J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010). [CrossRef] [PubMed]
  38. N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004). [CrossRef]
  39. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006). [CrossRef]
  40. S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008). [CrossRef]
  41. F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009). [CrossRef] [PubMed]
  42. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010). [CrossRef] [PubMed]
  43. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008). [CrossRef] [PubMed]
  44. F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).
  45. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010). [CrossRef] [PubMed]
  46. F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009). [CrossRef]
  47. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008). [CrossRef]
  48. S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004). [CrossRef]
  49. S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited