OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 3 — Sep. 30, 2012

Optical Spectroscopy of Biological Cells

Adam Wax, Michael G. Giacomelli, Thomas E. Matthews, Matthew T. Rinehart, Francisco E. Robles, and Yizheng Zhu  »View Author Affiliations


Advances in Optics and Photonics, Vol. 4, Issue 3, pp. 322-378 (2012)
http://dx.doi.org/10.1364/AOP.4.000322


View Full Text Article

Enhanced HTML    Acrobat PDF (3830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical spectroscopy has seen expanding use for the study of biological cells in recent years. An overview of relevant spectroscopic techniques is presented, and applications to biological cells are reviewed.

© 2012 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: April 3, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: June 29, 2012
Published: July 27, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Citation
Adam Wax, Michael G. Giacomelli, Thomas E. Matthews, Matthew T. Rinehart, Francisco E. Robles, and Yizheng Zhu, "Optical Spectroscopy of Biological Cells," Adv. Opt. Photon. 4, 322-378 (2012)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-4-3-322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007). [CrossRef] [PubMed]
  2. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998). [CrossRef]
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  4. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999). [CrossRef]
  5. C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000). [CrossRef] [PubMed]
  6. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000). [CrossRef] [PubMed]
  7. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007). [CrossRef] [PubMed]
  8. K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009). [CrossRef] [PubMed]
  9. L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011). [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  11. F. E. Robles, “Light scattering and absorption spectroscopy in three dimensions using quantitative low coherence interferometry for biomedical applications,” Ph.D. Thesis (Duke University: Durham, N.C., 2011).
  12. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  13. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  14. R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005). [CrossRef] [PubMed]
  15. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010). [CrossRef] [PubMed]
  16. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009). [CrossRef] [PubMed]
  17. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010). [CrossRef] [PubMed]
  18. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006). [CrossRef] [PubMed]
  19. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  20. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008). [CrossRef] [PubMed]
  21. S. B. Haley and P. Erdös, “Wave propagation in one-dimensional disordered structures,” Phys. Rev. B Condens. Matter 45(15), 8572–8584 (1992). [CrossRef] [PubMed]
  22. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009). [CrossRef] [PubMed]
  23. D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010). [CrossRef] [PubMed]
  24. G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975). [PubMed]
  25. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999). [CrossRef] [PubMed]
  26. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef] [PubMed]
  27. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, and D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23(18), 1489–1491 (1998). [CrossRef] [PubMed]
  28. J.-C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: observations and calculations,” Opt. Lett. 32(22), 3358–3360 (2007). [CrossRef] [PubMed]
  29. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001). [CrossRef]
  30. Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003). [CrossRef]
  31. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001). [CrossRef]
  32. H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004). [CrossRef] [PubMed]
  33. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002). [CrossRef] [PubMed]
  34. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  35. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003). [CrossRef] [PubMed]
  36. J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004). [CrossRef] [PubMed]
  37. J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006). [CrossRef]
  38. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008). [CrossRef] [PubMed]
  39. K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010). [CrossRef] [PubMed]
  40. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009). [CrossRef] [PubMed]
  41. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005). [CrossRef] [PubMed]
  42. T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express 14(23), 11088–11102 (2006). [CrossRef] [PubMed]
  43. N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002). [CrossRef] [PubMed]
  44. J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009). [CrossRef] [PubMed]
  45. N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004). [CrossRef] [PubMed]
  46. R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010). [CrossRef] [PubMed]
  47. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005). [CrossRef] [PubMed]
  48. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007). [CrossRef] [PubMed]
  49. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32(17), 2517–2519 (2007). [CrossRef] [PubMed]
  50. Z. J. Smith and A. J. Berger, “Integrated Raman- and angular-scattering microscopy,” Opt. Lett. 33(7), 714–716 (2008). [CrossRef] [PubMed]
  51. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009). [CrossRef] [PubMed]
  52. Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010). [CrossRef] [PubMed]
  53. C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009). [CrossRef] [PubMed]
  54. J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002). [CrossRef] [PubMed]
  55. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999). [CrossRef] [PubMed]
  56. X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011). [CrossRef] [PubMed]
  57. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998). [CrossRef] [PubMed]
  58. D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl. Opt. 46(24), 6185–6191 (2007). [CrossRef] [PubMed]
  59. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32(10), 1326–1328 (2007). [CrossRef] [PubMed]
  60. K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).
  61. M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008). [CrossRef] [PubMed]
  62. N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994). [CrossRef]
  63. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996). [CrossRef]
  64. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006). [CrossRef]
  65. T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003). [CrossRef] [PubMed]
  66. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996). [CrossRef] [PubMed]
  67. D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006). [CrossRef] [PubMed]
  68. C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009). [CrossRef] [PubMed]
  69. F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997). [CrossRef]
  70. M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011). [CrossRef] [PubMed]
  71. N. Gov, “Membrane undulations driven by force fluctuations of active proteins,” Phys. Rev. Lett. 93(26), 268104 (2004). [CrossRef] [PubMed]
  72. N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003). [CrossRef] [PubMed]
  73. R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979). [CrossRef] [PubMed]
  74. D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994). [CrossRef] [PubMed]
  75. S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004). [CrossRef] [PubMed]
  76. J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005). [CrossRef] [PubMed]
  77. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006). [CrossRef] [PubMed]
  78. Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96(11), 118101 (2006). [CrossRef] [PubMed]
  79. A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992). [CrossRef] [PubMed]
  80. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005). [CrossRef] [PubMed]
  81. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  82. F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975). [CrossRef]
  83. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965). [CrossRef]
  84. G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007). [CrossRef] [PubMed]
  85. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995). [CrossRef] [PubMed]
  86. G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002). [CrossRef] [PubMed]
  87. V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).
  88. M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008). [CrossRef]
  89. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010). [CrossRef] [PubMed]
  90. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). [CrossRef] [PubMed]
  91. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011). [CrossRef] [PubMed]
  92. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010). [CrossRef] [PubMed]
  93. K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007). [CrossRef] [PubMed]
  94. M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000). [CrossRef] [PubMed]
  95. J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977). [PubMed]
  96. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011). [CrossRef] [PubMed]
  97. K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010). [CrossRef] [PubMed]
  98. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010). [CrossRef] [PubMed]
  99. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011). [CrossRef] [PubMed]
  100. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009). [CrossRef] [PubMed]
  101. H. C. d. Hulst, Light Scattering by Small Particles (Dover, 1981).
  102. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  103. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  104. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010). [CrossRef] [PubMed]
  105. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011). [CrossRef] [PubMed]
  106. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009). [CrossRef] [PubMed]
  107. Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011). [CrossRef] [PubMed]
  108. H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36(12), 2281–2283 (2011). [CrossRef] [PubMed]
  109. Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011). [CrossRef] [PubMed]
  110. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000). [CrossRef] [PubMed]
  111. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001). [CrossRef] [PubMed]
  112. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005). [CrossRef] [PubMed]
  113. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009). [CrossRef] [PubMed]
  114. M. A. Lichtman and W. J. Williams, Williams Hematology (McGraw-Hill, 2006).
  115. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010). [CrossRef] [PubMed]
  116. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011). [CrossRef] [PubMed]
  117. R. K. Ahrenkiel, “Modified Kramers–Kronig analysis of optical spectra,” J. Opt. Soc. Am. 61(12), 1651–1655 (1971). [CrossRef]
  118. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010). [CrossRef] [PubMed]
  119. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  120. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  121. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  122. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  123. Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett. 36(4), 430–432 (2011). [CrossRef] [PubMed]
  124. Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23(24), 4539–4543 (1984). [CrossRef] [PubMed]
  125. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008). [CrossRef] [PubMed]
  126. D. Ghiglia and M. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms & Software (Wiley Interscience, 1998).
  127. C. K. Hitzenberger, M. Sticker, R. Leitgeb, and A. F. Fercher, “Differential phase measurements in low-coherence interferometry without 2π ambiguity,” Opt. Lett. 26(23), 1864–1866 (2001). [CrossRef] [PubMed]
  128. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009). [CrossRef] [PubMed]
  129. E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed. (CRC Press, 1991).
  130. T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009). [CrossRef]
  131. L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993). [CrossRef] [PubMed]
  132. M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010). [CrossRef]
  133. Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008). [CrossRef]
  134. G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010). [CrossRef]
  135. S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011). [CrossRef]
  136. G. Srinivasan and R. Bhargava, “Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality,” Spectroscopy22(7) (July1, 2007), http://www.spectroscopyonline.com/spectroscopy/FT-IR+Spectroscopy/Fourier-Transform-Infrared-Spectroscopic-Imaging-T/ArticleStandard/Article/detail/443485
  137. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990). [CrossRef] [PubMed]
  138. M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000). [PubMed]
  139. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004). [CrossRef] [PubMed]
  140. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008). [CrossRef] [PubMed]
  141. A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010). [CrossRef] [PubMed]
  142. M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010). [CrossRef] [PubMed]
  143. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000). [CrossRef] [PubMed]
  144. J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009). [CrossRef] [PubMed]
  145. L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011). [CrossRef]
  146. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011). [CrossRef] [PubMed]
  147. M. Okuno and H. O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35(24), 4096–4098 (2010). [CrossRef] [PubMed]
  148. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).
  149. E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. Inst. Radio Eng. 50(11), 2367 (1962).
  150. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981). [CrossRef]
  151. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007). [CrossRef]
  152. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  153. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  154. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010). [CrossRef] [PubMed]
  155. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012). [CrossRef] [PubMed]
  156. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011). [CrossRef]
  157. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  158. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008). [CrossRef] [PubMed]
  159. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982). [CrossRef] [PubMed]
  160. X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003). [CrossRef] [PubMed]
  161. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001). [CrossRef] [PubMed]
  162. R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010). [CrossRef]
  163. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006). [CrossRef] [PubMed]
  164. J. Y. Lee, S.-H. Kim, D. W. Moon, and E. S. Lee, “Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region,” Opt. Express 17(25), 22281–22295 (2009). [CrossRef] [PubMed]
  165. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979). [CrossRef]
  166. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  167. J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979). [CrossRef]
  168. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002). [CrossRef]
  169. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010). [CrossRef] [PubMed]
  170. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Rraman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004). [CrossRef] [PubMed]
  171. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006). [CrossRef] [PubMed]
  172. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  173. X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).
  174. B. Li, W. S. Warren, and M. C. Fischer, “Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses,” Opt. Express 18(25), 25825–25832 (2010). [CrossRef] [PubMed]
  175. E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011). [CrossRef] [PubMed]
  176. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011). [CrossRef] [PubMed]
  177. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976). [CrossRef]
  178. J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]
  179. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007). [CrossRef] [PubMed]
  180. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007). [CrossRef] [PubMed]
  181. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  182. T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011). [CrossRef] [PubMed]
  183. D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008). [CrossRef] [PubMed]
  184. I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010). [CrossRef] [PubMed]
  185. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011). [CrossRef] [PubMed]
  186. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005). [CrossRef] [PubMed]
  187. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003). [PubMed]
  188. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009). [CrossRef]
  189. A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008). [CrossRef] [PubMed]
  190. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011). [CrossRef] [PubMed]
  191. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009). [CrossRef] [PubMed]
  192. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008). [CrossRef] [PubMed]
  193. M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011). [CrossRef] [PubMed]
  194. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011). [CrossRef] [PubMed]
  195. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  196. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003). [CrossRef] [PubMed]
  197. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006). [CrossRef] [PubMed]
  198. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008). [CrossRef]
  199. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  200. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007). [CrossRef] [PubMed]
  201. A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181(4100), 657–658 (1973). [CrossRef] [PubMed]
  202. A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids—theoretical treatment,” Science 190(4214), 556–557 (1975).
  203. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef] [PubMed]
  204. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010). [CrossRef] [PubMed]
  205. M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).
  206. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011). [CrossRef] [PubMed]
  207. Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011). [CrossRef] [PubMed]
  208. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010). [CrossRef] [PubMed]
  209. A. Wax and V. Backman, Biomedical Applications of Light Scattering. Biophotonics, I. Gannot and J. Neev, ed. (McGraw-Hill, 2010).