OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 3 — Sep. 30, 2012

High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang  »View Author Affiliations


Advances in Optics and Photonics, Vol. 4, Issue 3, pp. 379-440 (2012)
http://dx.doi.org/10.1364/AOP.4.000379


View Full Text Article

Enhanced HTML    Acrobat PDF (3976 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new class of planar optics has emerged using subwavelength gratings with a large refractive index contrast, herein referred to as high-contrast gratings (HCGs). This seemingly simple structure lends itself to extraordinary properties, which can be designed top-down based on intuitive guidelines. The HCG is a single layer of high-index material that can be as thin as 15% of one wavelength. It can be designed to reflect or transmit nearly completely and with specific optical phase over a broad spectral range and/or various incident beam angles. We present a simple theory providing an intuitive phase selection rule to explain the extraordinary features. Our analytical results agree well not only with numerical simulations but also experimental data. The HCG has made easy fabrication of surface-normal optical devices possible, including vertical-cavity surface-emitting lasers (VCSELs), tunable VCSELs, and tunable filters. HCGs can be designed to result in high-quality-factor (Q) resonators with surface-normal output, which is promising for wafer-scale lasers and optical sensors. Spatially chirped HCGs are shown to be excellent focusing reflectors and lenses with very high numerical apertures. This field has seen rapid advances in experimental demonstrations and theoretical results. We provide an overview of the underlying new physics and the latest results of devices.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.5750) Optical devices : Resonators
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 16, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 2, 2012
Published: September 4, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Citation
Connie J. Chang-Hasnain and Weijian Yang, "High-contrast gratings for integrated optoelectronics," Adv. Opt. Photon. 4, 379-440 (2012)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-4-3-379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).
  2. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).
  3. B. C. Kress and P. Meyrueis, Applied Digital Optics: from Micro-optics to Nanophotonics (Wiley, 2009).
  4. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
  5. C. J. Chang-Hasnain, C. F. R. Mateus, and M. C. Y. Huang, “Ultra broadband mirror using subwavelength grating,” U.S. Patent 7,304,781 (Dec.4, 2007).
  6. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998). [PubMed]
  7. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
  8. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, and E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only,” Appl. Opt. 41(18), 3558–3566 (2002). [PubMed]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
  10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
  11. A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett. 41(14), 805–807 (2005).
  12. L. Zhuang, S. Schablitsky, R. C. Shi, and S. Y. Chou, “Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14(6), 4055–4057 (1996).
  13. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
  14. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
  15. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high contrast grating,” IEEE Photon. Technol. Lett. 20(6), 434–436 (2008).
  16. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
  17. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009). [PubMed]
  18. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 869–878 (2009).
  19. C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18(15), 15461–15466 (2010). [PubMed]
  20. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
  21. P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I.-S. Chung, and J. Mørk, “High-index-contrast subwavelength grating VCSEL,” Proc. SPIE 7615, 76150J (2010).
  22. S. Boutami, B. Ben Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
  23. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical checkerboard–Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007). [PubMed]
  24. I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
  25. Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Multiwavelength HCG–VCSEL Array,” in 2010 Second IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2010), pp. 11–12.
  26. Y. Rao, C. Chase, M. C. Y. Huang, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, D. P. Worland, A. E. Willner, and C. J. Chang-Hasnain, “Continuous tunable 1550-nm high contrast grating VCSEL,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh5C.3.
  27. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. Fedeli, and P. Viktorovitch, “ CMOS-compatible ultra-compact 1.55-µm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
  28. T. Stöferle, N. Moll, T. Wahlbrink, J. Bolten, T. Mollenhauer, U. Scherf, and R. F. Mahrt, “Ultracompact silicon/polymer laser with an absorption-insensitive nanophotonic resonator,” Nano Lett. 10(9), 3675–3678 (2010). [PubMed]
  29. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E. B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010). [PubMed]
  30. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008). [PubMed]
  31. V. Karagodsky, T. Tran, M. Wu, and C. J. Chang-Hasnain, “Double-resonant enhancement of surface enhanced Raman scattering using high contrast grating resonators,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFN1.
  32. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010). [PubMed]
  33. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18(12), 12606–12614 (2010). [PubMed]
  34. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausolei, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
  35. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “A silicon lens for integrated free-space optics,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2011).
  36. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009). [PubMed]
  37. W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, ”Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(1), 23–29 (2012).
  38. T. Sun, W. Yang, V. Karagodsky, W. Zhou, and C. Chang-Hasnain, “Low-loss slow light inside high contrast grating waveguide,” Proc. SPIE 8270, 82700A (2012).
  39. B. Pesala, V. Karagodsky, and C. J. Chang-Hasnain, “Ultra-compact optical coupler and splitter using high-contrast grating hollow-core waveguide,” in Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IWH1.
  40. L. Zhu, V. Karagodsky, and C. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
  41. M. G. Moharam and T. K. Gaylord, “Rigorous coupled wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
  42. S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence,” J. Opt. Soc. Am. A 6(12), 1869 (1989).
  43. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40(4), 553–573 (1993).
  44. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010). [PubMed]
  45. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry–Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36(9), 1704–1706 (2011). [PubMed]
  46. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20(10), 10888–10895 (2012). [PubMed]
  47. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,” J. Lightwave Technol. 24(6), 2442–2449 (2006).
  48. T. Tamir, G. Griffel, and H. L. Bertoni, ed., Guided-Wave Optoelectronics, 2nd ed. (Springer-Verlag, 1990).
  49. P. C. Magnusson, G. C. Alexander, V. K. Tripathi, and A. Weisshaar, Transmission Lines and Wave Propagation, 4th ed. (CRC Press, 2001).
  50. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [PubMed]
  51. J. P. Reithmaier, G. S ęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [PubMed]
  52. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
  53. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  54. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Optical modulation using anti-crossing between paired amplitude and phase resonators,” Opt. Express 15(25), 17264–17272 (2007). [PubMed]
  55. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
  56. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
  57. F. Koyama, H. Uenohara, T. Sakaguchi, and K. Iga, “GaAlAs/GaAs MOCVD growth for surface emitting laser,” Jpn. J. Appl. Phys. Part 1 26(Part 1, No. 7), 1077–1081 (1987).
  58. J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54(15), 1400–1402 (1989).
  59. L. A. Coldren, R. S. Geels, S. W. Corzine, and J. W. Scott, “Efficient vertical-cavity lasers,” Opt. Quantum Electron. 24(2), S105–S119 (1992).
  60. M. Orenstein, A. Von Lehmen, C. J. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, and L. T. Florez, “Matrix addressable vertical cavity surface emitting laser array,” Electron. Lett. 27(5), 437–438 (1991).
  61. C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
  62. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27(6), 1402–1409 (1991).
  63. M. W. Maeda, C. J. Chang-Hasnain, C. Lin, J. S. Patel, H. A. Johnson, and J. A. Walker, “Use of a multiwavelength surface-emitting laser array in a four-channel wavelength-division-multiplexed system experiment,” Photonics Technol. Lett. 3(3), 268–269 (1991).
  64. K. H. Hahn, M. R. Tan, and S. Y. Wang, “Intensity noise of large area vertical cavity surface emitting lasers in multimode optical fibre links,” Electron. Lett. 30(2), 139–140 (1994).
  65. C. J. Chang-Hasnain, “VCSEL for metro communications,” in Optical Fiber Communications, , I. Kaminow and T. Li, eds. (Academic, 2002), vol. IV A, pp. 666–698.
  66. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
  67. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
  68. A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
  69. W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
  70. A. Mizutani, N. Hatori, N. Nishiyama, F. Koyama, and K. Iga, “InGaAs/GaAs vertical-cavity surface emitting laser on GaAs (311)B substrate using carbon auto-doping,” Jpn. J. Appl. Phys. 37(Part 1, No. 3B), 1408–1412 (1998).
  71. S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett. 69(1), 7–9 (1996).
  72. J. M. Ostermann, P. Debernardi, and R. Michalzik, “Optimized integrated surface grating design for polarization-stable VCSELs,” IEEE J. Quantum Electron. 42(7), 690–698 (2006).
  73. A. Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
  74. R. Michalzik, J. M. Ostermann, and P. Debernardi, “Polarization-stable monolithic VCSELs,” Proc. SPIE, 6908, 69080A (2008).
  75. S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88°C, continuous-wave operation of apertured, intracavity contacted, 1.55 µm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
  76. W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
  77. M. Lackner, M. Schwarzott, F. Winter, B. Kogel, S. Jatta, H. Halbritter, and P. Meissner, “CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS–VCSEL at 1.55 µm,” Opt. Lett. 31(21), 3170–3172 (2006). [PubMed]
  78. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
  79. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking,” IEEE Photon. Technol. Lett. 8(1), 98–100 (1996).
  80. D. Sun, W. Fan, P. Kner, J. Boucart, T. Kageyama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16(3), 714–716 (2004).
  81. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS–VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
  82. M. C. Y. Huang, K. B. Cheng, Y. Zhou, B. Pesala, C. J. Chang-Hasnain, and A. P. Pisano, “Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL,” IEEE Photon. Technol. Lett. 18(10), 1197–1199 (2006).
  83. B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a >50 nm continuously tunable MEMS–VCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
  84. H. Halbritter, C. Sydlo, B. Kögel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS–VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
  85. S. Jatta, B. Kögel, M. Maute, K. Zogal, F. Riemenschneider, G. Böhm, M.-C. Amann, and P. Meißner, “Bulk-micromachined VCSEL at 1.55 µm with 76-nm single-mode continuous tuning range,” IEEE Photon. Technol. Lett. 21(24), 1822–1824 (2009).
  86. C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
  87. L. E. Eng, K. Bacher, W. Yuen, J. S. Harris, and C. J. Chang-Hasnain, “Multiple wavelength vertical cavity laser arrays on patterned substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
  88. F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
  89. T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
  90. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [PubMed]
  91. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1121–1134 (2006).
  92. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004). [PubMed]
  93. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [PubMed]
  94. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
  95. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [PubMed]
  96. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [PubMed]
  97. A. Löffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, “Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions,” Appl. Phys. Lett. 86(11), 111105 (2005).
  98. H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
  99. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [PubMed]
  100. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [PubMed]
  101. D. C. Shaver and D. C. Flanders, “X-ray zone plates fabricated using electron-beam and x-ray lithography,” J. Vac. Sci. Technol. 16(6), 1626–1630 (1979).
  102. K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, “Binary phase Fresnel lenses for generation of two-dimensional beam arrays,” Appl. Opt. 30(11), 1347–1354 (1991). [PubMed]
  103. T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982). [PubMed]
  104. M. Haruna, M. Takahashi, K. Wakahayashi, and H. Nishihara, “Laser beam lithographed micro-Fresnel lenses,” Appl. Opt. 29(34), 5120–5126 (1990). [PubMed]
  105. T. Shiono, M. Kitagawa, K. Setsune, and T. Mitsuyu, “Reflection micro-Fresnel lenses and their use in an integrated focus sensor,” Appl. Opt. 28(16), 3434–3442 (1989). [PubMed]
  106. T. Shiono and K. Setune, “Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development,” Opt. Lett. 15(1), 84–86 (1990). [PubMed]
  107. Yu. V. Troitski, “The energy conservation law for optical two-port devices,” Opt. Spectrosc. 92(4), 555–559 (2002).
  108. S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12(7), 1267–1272 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited