OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 4 — Dec. 31, 2012

Optical methods for distance and displacement measurements

Garry Berkovic and Ehud Shafir  »View Author Affiliations

Advances in Optics and Photonics, Vol. 4, Issue 4, pp. 441-471 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This tutorial reviews various noncontact optical sensing techniques that can be used to measure distances to objects, and related parameters such as displacements, surface profiles, velocities and vibrations. The techniques that are discussed and compared include intensity-based sensing, triangulation, time-of-flight sensing, confocal sensing, Doppler sensing, and various kinds of interferometric sensing with both high- and low-coherence sources.

© 2012 OSA

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 3, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 24, 2012
Published: September 11, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Garry Berkovic and Ehud Shafir, "Optical methods for distance and displacement measurements," Adv. Opt. Photon. 4, 441-471 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001). [CrossRef]
  2. P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001). [CrossRef]
  3. P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008). [CrossRef]
  4. J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
  5. C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
  6. “Fiber optic sensors: Introduction,” http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_intro.cfm.
  7. R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979). [CrossRef] [PubMed]
  8. A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996). [CrossRef] [PubMed]
  9. H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996). [CrossRef]
  10. H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008). [CrossRef]
  11. W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995). [CrossRef]
  12. J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974). [CrossRef]
  13. V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008). [CrossRef] [PubMed]
  14. http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_theory.cfm 36.
  15. The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010). [CrossRef] [PubMed]
  16. P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997). [CrossRef]
  17. G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
  18. J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002). [CrossRef]
  19. G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967). [CrossRef]
  20. M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
  21. J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999). [CrossRef]
  22. C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989). [CrossRef]
  23. Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991). [CrossRef]
  24. A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
  25. See, for example, “Thales,” http://en.wikipedia.org/wiki/Thales.
  26. Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989). [CrossRef]
  27. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000). [CrossRef]
  28. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33(7), 1306–1314 (1994). [CrossRef] [PubMed]
  29. M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984). [CrossRef] [PubMed]
  30. K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997). [CrossRef]
  31. Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978). [CrossRef]
  32. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998). [CrossRef] [PubMed]
  33. J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006). [CrossRef]
  34. D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977). [CrossRef]
  35. P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988). [CrossRef]
  36. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001). [CrossRef]
  37. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010). [CrossRef] [PubMed]
  38. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
  39. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000). [CrossRef] [PubMed]
  40. C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998). [CrossRef]
  41. B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.
  42. H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998). [CrossRef]
  43. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000). [CrossRef]
  44. H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994). [CrossRef] [PubMed]
  45. J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004). [CrossRef]
  46. J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004). [CrossRef]
  47. T. Dabbs and M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31(16), 3030–3035 (1992). [CrossRef] [PubMed]
  48. R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992). [CrossRef]
  49. E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006). [CrossRef] [PubMed]
  50. E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005). [CrossRef]
  51. K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006). [CrossRef]
  52. G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008). [CrossRef]
  53. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  54. A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990). [CrossRef]
  55. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981). [CrossRef]
  56. Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996). [CrossRef]
  57. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996). [CrossRef]
  58. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999). [CrossRef]
  59. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004). [CrossRef] [PubMed]
  60. C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998). [PubMed]
  61. W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006). [CrossRef]
  62. M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006). [CrossRef]
  63. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991). [CrossRef] [PubMed]
  64. E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011). [CrossRef]
  65. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  66. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005). [CrossRef]
  67. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  68. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995). [CrossRef]
  69. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11(21), 2753–2761 (2003). [CrossRef] [PubMed]
  70. P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000). [CrossRef] [PubMed]
  71. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996). [CrossRef] [PubMed]
  72. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000). [CrossRef] [PubMed]
  73. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007). [CrossRef]
  74. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10(1), 4–6 (1985). [CrossRef] [PubMed]
  75. Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998). [CrossRef]
  76. W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011). [CrossRef]
  77. E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007). [CrossRef]
  78. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964). [CrossRef]
  79. J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965). [CrossRef]
  80. R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971). [CrossRef]
  81. V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16(17), 1358–1360 (1991). [CrossRef] [PubMed]
  82. A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982). [PubMed]
  83. K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968). [CrossRef]
  84. J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).
  85. M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001). [CrossRef] [PubMed]
  86. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006). [CrossRef]
  87. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972). [CrossRef]
  88. W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979). [CrossRef] [PubMed]
  89. P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006). [CrossRef]
  90. R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010). [CrossRef]
  91. C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006). [CrossRef]
  92. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973). [CrossRef] [PubMed]
  93. K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, and M. Qudeisat, “Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle,” Opt. Express 20(5), 5658–5682 (2012). [CrossRef] [PubMed]
  94. D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998). [CrossRef]
  95. P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004). [CrossRef]
  96. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999). [CrossRef] [PubMed]
  97. F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009). [CrossRef] [PubMed]
  98. G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985). [CrossRef]
  99. K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993). [CrossRef] [PubMed]
  100. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009). [CrossRef] [PubMed]
  101. E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
  102. H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005). [CrossRef] [PubMed]
  103. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995). [CrossRef]
  104. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998). [CrossRef] [PubMed]
  105. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002). [CrossRef]
  106. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012). [CrossRef]
  107. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004). [CrossRef]
  108. F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011). [CrossRef] [PubMed]
  109. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007). [CrossRef] [PubMed]
  110. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007). [CrossRef]
  111. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
  112. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997). [CrossRef]
  113. S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999). [CrossRef]
  114. L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007). [CrossRef] [PubMed]
  115. T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005). [CrossRef]
  116. S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009). [CrossRef]
  117. X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005). [CrossRef]
  118. J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007). [CrossRef]
  119. P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010). [CrossRef]
  120. P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011). [CrossRef]
  121. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011). [CrossRef]
  122. D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited