OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 4, Iss. 4 — Dec. 31, 2012

Applications of digital and analog holography in three-dimensional imaging

Georges Nehmetallah and Partha P. Banerjee  »View Author Affiliations


Advances in Optics and Photonics, Vol. 4, Issue 4, pp. 472-553 (2012)
http://dx.doi.org/10.1364/AOP.4.000472


View Full Text Article

Enhanced HTML    Acrobat PDF (8986 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital and analog holography, along with its many variations, viz., holographic interferometry, holographic microscopy, holographic tomography, multiwavelength digital holography, phase-shifting holography, compressive holography, coherence holography, etc., have become the methods of choice for various metrological applications in three-dimensional (3D) imaging. In this review, we discuss the basic principles of analog and digital holography and the various topics mentioned above, with selected applications to real-world problems. We also discuss other related topics such as dynamic holography, non-Bragg orders, and compressive holographic tomography, nonlinear holography, holographic TV, as well as a nonholographic technique for 3D visualization, viz., transport of intensity imaging. Finally, we expose interested readers to contemporary topics in the area, viz., nonlinear holography and real-time holographic TV.

© 2012 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(100.2650) Image processing : Fringe analysis
(100.6950) Image processing : Tomographic image processing
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 11, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 21, 2012
Published: December 10, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Citation
Georges Nehmetallah and Partha P. Banerjee, "Applications of digital and analog holography in three-dimensional imaging," Adv. Opt. Photon. 4, 472-553 (2012)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-4-4-472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  2. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
  3. T.-C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with Matlab® (Elsevier, 2001).
  4. U. Schnars and W. Juptner, Digital Holography (Springer, 2005).
  5. T. Kreis, Holographic Interferometry: Principles and Methods (Springer, 1996).
  6. P. Hariharan, Optical Holography (Cambridge University Press, 1984).
  7. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [PubMed]
  8. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, 1980).
  9. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
  10. T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
  11. T. M. Kreis and W. Juptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
  12. U. Schnars, T. Kreis, and W. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35(4), 977–982 (1996).
  13. G. Nehmetallah, P. P. Banerjee, N. V.. Kukhtarev, and S. C. Praharaj, “Real time digital holographic interferometry of reflective objects,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA32.
  14. G. Nehmetallah, P. P. Banerjee, N. V. Kukhtarev, and S. C. Praharaj, “Digital holographic interferometry of translucent objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper DMC2.
  15. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11(1), 107–117 (1994).
  16. R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
  17. H. A. Zebker and Y. Lu, “Phase unwrapping algorithms for radar interferometry: Residue-cut, least-squares, and synthesis algorithms,” J. Opt. Soc. Am. A 15(3), 586–597 (1998).
  18. P. Hariharan, Basics of Holography (Cambridge University Press, 2002).
  19. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [PubMed]
  20. N. Kukhtarev, T. Kukhtareva, P. P. Banerjee, and G. Nehmetallah, “Holographic imaging and interferometry with non-Bragg diffraction orders in the volume gratings,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DTu3C.3.
  21. R. J. Parker, “A quarter century of thermoplastic holography,” in Proceedings of the International Conference on Hologram Interferometry and Speckle Metrology, K. Stetson and R. Pryputniewicz, eds. (Society for Experimental Mechanics, 1990), pp. 217–224.
  22. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  23. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  24. P. P. Banerjee, G. Nehmetallah, N. Kukhtarev, and S. C. Praharaj, “Determination of model airplane attitudes using dynamic holographic interferometry,” Appl. Opt. 47(21), 3877–3885 (2008). [PubMed]
  25. B. L. Volodin, B. Kippelen, K. Meerholz, N. V. Kukhtarev, H. J. Caulfield, and N. Peyghambarian, “Non-Bragg orders in dynamic self-diffraction on thick phase gratings in a photorefractive polymer,” Opt. Lett. 21(7), 519–521 (1996). [PubMed]
  26. A. Chirita, “Real-time scaling of micro-objects by multiplexed holographic recording on photo- thermo-plastic structure,” J. Mod. Opt. 57(10), 854–858 (2010).
  27. T. Credelle and F. Spong, “Thermoplastic media for holographic recording,” Proc. SPIE 130, 619–633 (1996).
  28. M. A. Golub, A. A. Friesem, and L. Eisen, “Bragg properties of efficient surface relief gratings in the resonance domain,” Opt. Commun. 235, 261–267 (2004).
  29. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [PubMed]
  30. W. Osten, S. Seebacher, T. Baumbach, and W. Jüptner, “Absolute shape control of microcomponents using digital holography and multiwavelength-contouring,” Proc. SPIE 4275, 71–84 (2001).
  31. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007). [PubMed]
  32. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [PubMed]
  33. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999). [PubMed]
  34. G. Nehmetallah and P. P. Banerjee, “Digital holographic interferometry and microscopy for 3-D object visualization,” in Frontiers in OpticsOSA Technical Digest (Optical Society of America, 2011), paper FTuF6.
  35. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). [PubMed]
  36. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Computer synthesis of holograms for 3-D display,” J. Commun. 11, 661–674 (1968).
  37. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
  38. W. H. Lee, “Sampled fourier transform hologram generated by computer,” Appl. Opt. 9(3), 639–643 (1970). [PubMed]
  39. D. Leseberg and O. Bryngdahl, “Computer-generated rainbow holograms,” Appl. Opt. 23(14), 2441–2447 (1984). [PubMed]
  40. F. Wyrowski, R. Hauck, and O. Bryngdahl, “Computer-generated holography: hologram repetition and phase manipulation,” J. Opt. Soc. Am. A 4(4), 694–698 (1987).
  41. D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27(14), 3020–3024 (1988). [PubMed]
  42. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5(6), 967–969 (1966). [PubMed]
  43. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967). [PubMed]
  44. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
  45. Wikipedia, “Computer-generated holography, http://en.wikipedia.org/wiki/Computer-generated_holography.
  46. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
  47. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi, “Special-purpose computer for holography HORN-2,” Comput. Phys. Commun. 93(1), 13–20 (1996).
  48. J. L. Juárez-Pérez, A. Olivares-Pérez, and L. R. Berriel-Valdos, “Nonredundant calculations for creating digital Fresnel holograms,” Appl. Opt. 36(29), 7437–7443 (1997). [PubMed]
  49. H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Opt. Rev. 8(5), 331–335 (2001).
  50. “Online CGH Instructions,”http://corticalcafe.com/software_onlineCGHinstructions.htm.
  51. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
  52. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [PubMed]
  53. A. Barty, K. A. Nugent, A. R. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4–6), 329–336 (2000).
  54. M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 2(11), 2019–2026 (1985).
  55. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
  56. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).
  57. J. W. Lee, J. Ku, L. Waller, and G. Barbastathis, “Transport of intensity imaging applied to quantitative optical phase tomography,” in Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest (CD) (Optical Society of America, 2011), paper DTuD2.
  58. A. C. Kak and M. Slaney, Principles of Computer Tomography Imaging (IEEE Press, 1999).
  59. G. Nehmetallah and P. P. Banerjee, “SHOT: single-beam holographic tomography,” Proc. SPIE 7851, 785101 (2010).
  60. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2007).
  61. G. Nehmetallah, P. P. Banerjee, and S. Praharaj, “Digital holographic tomography for 3-D visualization,” in Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest (CD) (Optical Society of America, 2011), paper DWE3.
  62. C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
  63. M. J. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39(6), 437–444 (1949). [PubMed]
  64. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).
  65. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006).
  66. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
  67. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(18), 13040–13049 (2009). [PubMed]
  68. C. Moler, “Cleve’s corner—“magic” reconstruction: compressed sensing,” http://www.mathworks.com/matlabcentral/linkexchange/links/2336-cleves-corner-magic.
  69. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
  70. A. J. Devaney, “Nonuniqueness in the inverse scattering problem,” J. Math. Phys. 19(7), 1526–1531 (1978).
  71. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007). [PubMed]
  72. L. Tian, J. Lee, and G. Barbastathis, “Compressive holographic inversion of particle scattering,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DMA6.
  73. G. Nehmetallah and L. Williams, “Tomographic compressive holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DM4C.6.
  74. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13(26), 9629–9635 (2005). [PubMed]
  75. M. Takeda, “Coherence holography: a tutorial review,” in Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest (CD) (Optical Society of America, 2011), paper DTuE2.
  76. J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 1985).
  77. C. W. McCutchen, “Generalized source and the van Cittert–Zernike theorem: a study of the spatial coherence required for interferometry,” J. Opt. Soc. Am. 56(6), 727–733 (1966).
  78. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
  79. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
  80. C. Barsi and J. W. Fleischer, “Increased field of view via nonlinear digital holography,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010) paper CMCC4.
  81. A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83(3), 031802 (2011).
  82. G. Nehmetallah and P. P. Banerjee, “Numerical modeling of (D+1)-dimensional solitons in a sign alternating nonlinear medium using an adaptive fast Hankel split-step method,” J. Opt. Soc. Am. B 22(10), 2200–2207 (2005).
  83. V. M. Bove, “What is holographic television, and will it ever be in my living room?” in International Conference on Stereoscopic 3D for Media and Entertainment (Society of Motion Picture and Television Engineers, 2010), paper 3D-CONF_BOVE.
  84. L. H. Enloe, J. A. Murphy, and C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
  85. R. J. Doyle and W. E. Glenn, “Remote real-time reconstruction of holograms using the lumatron,” Appl. Opt. 11(5), 1261–1264 (1972). [PubMed]
  86. K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid-crystal device,” Proc. SPIE 1667, 19–31 (1992).
  87. N. Hashimoto, K. Hoshino, and S. Morokawa, “Improved real-time holography system with LCDs,” Proc. SPIE 1667, 2–7 (1992).
  88. V. M. Bove, “Live holographic TV: from misconceptions to engineering,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, Society of Motion Picture and Television Engineers, 2011), .
  89. V. M. Bove, Q. Y. J. Smithwick, J. Barabas, and D. E. Smalley, “Is 3-D TV preparing the way for holographic TV?,” presented at The 8th International Symposium on Display Holography, Shenzhen, China, July 13–17, 2009.
  90. P. St. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
  91. V. M. Bove, W. J. Plesniak, T. Quentmeyer, and J. Barabas, “Real-time holographic video images with commodity PC hardware,” Proc. SPIE 5664A, 255–262 (2005).
  92. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 795702 (2011).
  93. J. Barabas, Q. Y. J. Smithwick, and V. M. Bove, “Evaluation of rendering algorithms for presenting layered information on holographic displays,” SID Symp. Dig. Tech. Papers 41, 1233–1236 (2010).
  94. Q. Y. J. Smithwick, D. E. Smalley, V. M. Bove, and J. Barabas, “Progress in holographic video displays based on guided-wave acousto-optic devices,” Proc. SPIE 6912, 69120H (2008).
  95. T. Quentmeyer, “Delivering real-time holographic video content with off-the-shelf PC hardware,” M.S. thesis (Massachusetts Institute of Technology, 2004).
  96. T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36(19), 4509–4515 (1997). [PubMed]
  97. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008). [PubMed]
  98. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010). [PubMed]
  99. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22(1), 949–960 (1978).
  100. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  101. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: Mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited