OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 2 — Jun. 30, 2013

Spin-noise spectroscopy: from proof of principle to applications

Valerii S. Zapasskii  »View Author Affiliations


Advances in Optics and Photonics, Vol. 5, Issue 2, pp. 131-168 (2013)
http://dx.doi.org/10.1364/AOP.5.000131


View Full Text Article

Enhanced HTML    Acrobat PDF (2116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

More than 30 years ago, the feasibility of detecting magnetic resonance in the Faraday-rotation noise spectrum of transmitted light was demonstrated experimentally. However, practical applications of this experimental approach have emerged only recently thanks, in particular, to a number of crucial technical advancements. This method has now become a popular and efficient tool for studying magnetic resonance and spin dynamics in atomic and solid-state paramagnets. In this paper, we present a review of research in the field of spin-noise spectroscopy, including its physical basis, its evolution since its first experimental demonstration, and its recent experimental advances. Main attention is paid to the specific capabilities of this technique that render it unique compared to other methods of magnetic and optical spectroscopy. The paper is primarily intended for experimentalists who may wish to use this novel optical technique.

© 2013 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

History
Original Manuscript: February 13, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 24, 2013
Published: June 20, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Valerii S. Zapasskii, "Spin-noise spectroscopy: from proof of principle to applications," Adv. Opt. Photon. 5, 131-168 (2013)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-5-2-131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001). [CrossRef]
  2. I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004). [CrossRef]
  3. E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).
  4. T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985). [CrossRef]
  5. T. Mitsui, “Spontaneous noise spectroscopy of an atomic magnetic resonance,” Phys. Rev. Lett. 84, 5292–5295 (2000). [CrossRef]
  6. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).
  7. A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997). [CrossRef]
  8. J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998). [CrossRef]
  9. M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007). [CrossRef]
  10. G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010). [CrossRef]
  11. S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010). [CrossRef]
  12. A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955). [CrossRef]
  13. V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975). [CrossRef]
  14. R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956). [CrossRef]
  15. E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983). [CrossRef]
  16. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley Interscience, 1976).
  17. E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp. 15, 436–451 (1973). [CrossRef]
  18. E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979). [CrossRef]
  19. V. S. Zapasskii, “Optical detection of spin-system magnetization in rare-earth-activated crystals and glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and M. F. Macfarlane, eds. (Elsevier, 1987), pp. 674–711.
  20. A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966). [CrossRef]
  21. F. Meier and B. Zakharchenya, Optical Orientation, Vol.8 of Modern Problems in Condensed Matter Science Series (North-Holland, 1984).
  22. F. Bitter, “The optical detection of radiofrequency resonance,” Phys. Rev. 76, 833–835 (1949). [CrossRef]
  23. D. Budker and D. F. Jackson Kimball, eds., Optical Magnetometry (Cambridge University, 2013).
  24. R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012). [CrossRef]
  25. H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms,” Phys. Rev. 105, 1924–1925 (1957). [CrossRef]
  26. W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957). [CrossRef]
  27. V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990). [CrossRef]
  28. C. J. Gorter, Paramagnetic Relaxation (Elsevier, 1947).
  29. E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).
  30. F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946). [CrossRef]
  31. A. Kastler, “Displacement of energy levels of atoms by light,” J. Opt. Soc. Am. 53, 902–906 (1963). [CrossRef]
  32. A. Kastler, “Optical methods for studying Hertzian resonances,” Science 158, 214–221 (1967). [CrossRef]
  33. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972). [CrossRef]
  34. S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997). [CrossRef]
  35. V. S. Zapasskii, “Highly sensitive polarimetric measurements,” J. Appl. Spectrosc. 37, 857–869 (1982). [CrossRef]
  36. E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).
  37. R. V. Jones, “Rotary ‘aether drag’,” Proc. R. Soc. A 349, 423–439 (1976). [CrossRef]
  38. P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).
  39. V. S. Zapasskii, “Depression of excess light noise in polarimetric measurements,” Opt. Spectrosc. 47, 450–451 (1979).
  40. S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004). [CrossRef]
  41. G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010). [CrossRef]
  42. A. A. Kharkevich, Spectra and Analysis (Springer, 1995).
  43. M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989). [CrossRef]
  44. M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989). [CrossRef]
  45. N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006). [CrossRef]
  46. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013). [CrossRef]
  47. E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).
  48. E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).
  49. D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).
  50. B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006). [CrossRef]
  51. W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967). [CrossRef]
  52. B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).
  53. D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974). [CrossRef]
  54. S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009). [CrossRef]
  55. A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998). [CrossRef]
  56. A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000). [CrossRef]
  57. T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991). [CrossRef]
  58. D. H. McIntyre, C. E. Fairchild, J. Cooper, and F. Walser, “Diode laser noise spectroscopy of rubidium,” Opt. Lett. 18, 1816–1818 (1993). [CrossRef]
  59. T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003). [CrossRef]
  60. M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004). [CrossRef]
  61. P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008). [CrossRef]
  62. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961). [CrossRef]
  63. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976). [CrossRef]
  64. S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  65. E. B. Aleksandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules,” J. Opt. Soc. Am. B 22, 7–20 (2005). [CrossRef]
  66. R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994). [CrossRef]
  67. G. G. Kozlov and V. S. Zapasskii, “Light-intensity susceptibility and ‘active’ noise spectroscopy,” arXiv: 1206.1921v1 [physics.optics] (9 June 2012).
  68. M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005). [CrossRef]
  69. J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998). [CrossRef]
  70. S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008). [CrossRef]
  71. F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).
  72. J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013). [CrossRef]
  73. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical Faraday rotator,” Appl. Opt. 3, 1079–1083 (1964). [CrossRef]
  74. H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry–Perot etalon,” J. Opt. Soc. Am. A 11, 754–758 (1994). [CrossRef]
  75. A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997). [CrossRef]
  76. G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005). [CrossRef]
  77. Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006). [CrossRef]
  78. L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010). [CrossRef]
  79. V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011). [CrossRef]
  80. W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964). [CrossRef]
  81. W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011). [CrossRef]
  82. H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011). [CrossRef]
  83. Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011). [CrossRef]
  84. V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013). [CrossRef]
  85. J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952). [CrossRef]
  86. E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985). [CrossRef]
  87. B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006). [CrossRef]
  88. G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008). [CrossRef]
  89. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef]
  90. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  91. Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013). [CrossRef]
  92. M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009). [CrossRef]
  93. P. Michler, ed., Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer, 2003).
  94. Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003). [CrossRef]
  95. J. Miller, “Diamond defects enable nanoscale nuclear magnetic resonance,” Phys. Today 66(4), 12–14 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited