OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 3 — Sep. 30, 2013

Application of space–time duality to ultrahigh-speed optical signal processing

Reza Salem, Mark A. Foster, and Alexander L. Gaeta  »View Author Affiliations

Advances in Optics and Photonics, Vol. 5, Issue 3, pp. 274-317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Manipulation and characterization of information using ultrafast optical signals is critical for numerous applications in telecommunications, biology, quantum information science, spectroscopy, and atomic and molecular physics. Femtosecond pulsed laser sources are available over a wide range of wavelengths and repetition rates, which enable the generation, transmission, and characterization of information at bandwidths beyond 1 THz. In this article, we review the concept of space–time duality as a system design tool for ultrafast optical processing and characterization. The combination of this design framework with recent advances in nonlinear optical devices enables the realization of highly complex signal processing systems that can generate, characterize, and manipulate arbitrary and non-repetitive optical waveforms at unprecedented processing speeds.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(250.4745) Optoelectronics : Optical processing devices
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:

Original Manuscript: February 19, 2013
Revised Manuscript: June 24, 2013
Manuscript Accepted: June 27, 2013
Published: August 21, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Reza Salem, Mark A. Foster, and Alexander L. Gaeta, "Application of space–time duality to ultrahigh-speed optical signal processing," Adv. Opt. Photon. 5, 274-317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.-S. Yan, A. E. Willner, X. Wu, A.-L. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol. 30, 3760–3770 (2012). [CrossRef]
  2. A. B. U’ren, E. Mukamel, K. Banaszek, and I. A. Walmsley, “Managing photons for quantum information processing,” Phil. Trans. R. Soc. A 361, 1493–1506 (2003). [CrossRef]
  3. K. E. Sheetz and J. Squier, “Ultrafast optics: imaging and manipulating biological systems,” J. Appl. Phys. 105, 051101 (2009). [CrossRef]
  4. J. A. Weinstein and N. T. Hunt, “Ultrafast chemical physics: in search of molecular movies,” Nat. Chem. 4, 157–158 (2012). [CrossRef]
  5. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005). [CrossRef]
  6. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006). [CrossRef]
  7. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011). [CrossRef]
  8. K. Dolgaleva, A. Malacarne, P. Tannouri, L. A. Fernandes, J. R. Grenier, J. S. Aitchison, J. Azaña, R. Morandotti, P. R. Herman, and P. V. S. Marques, “Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide,” Opt. Lett. 36, 4416–4418 (2011). [CrossRef]
  9. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azana, “Ultrafast all-optical differentiators,” Opt. Express 14, 10699–10707 (2006). [CrossRef]
  10. M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17, 19798–19807 (2009). [CrossRef]
  11. M. Li, H.-S. Jeong, J. Azana, and T.-J. Ahn, “25-terahertz-bandwidth all-optical temporal differentiator,” Opt. Express 20, 28273–28280 (2012). [CrossRef]
  12. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azana, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010). [CrossRef]
  13. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azana, “Photonic temporal integrator for all-optical computing,” Opt. Express 16, 18202–18214 (2008). [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  15. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989). [CrossRef]
  16. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). [CrossRef]
  17. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24, 2649–2662 (2006). [CrossRef]
  18. V. Torres-Company, J. L. Sáez, and P. Andres, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). [CrossRef]
  19. M. A. Foster, R. Salem, and A. L. Gaeta, “Ultrahigh-speed optical processing using space-time duality,” Opt. Photon. News 22(5), 29–35 (2011). [CrossRef]
  20. P. Tournois, “Analogie optique de la compression d’impulsion,” C. R. Acad. Sci. 258, 3839–3842 (1964).
  21. P. Tournois, J.-L. Verner, and G. Bienvenu, “Sur l’analogie optique de certains montages electroniques: formation d’images temporelles de signaux electriques,” C. R. Acad. Sci. 267, 375–378 (1968).
  22. W. J. Caputi, “Stretch: a time transformation technique,” IEEE Trans. Aerosp. Electronic Syst. AES-7, 269–278 (1971). [CrossRef]
  23. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  24. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969). [CrossRef]
  25. J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000). [CrossRef]
  26. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8, 232–234 (1983). [CrossRef]
  27. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013). [CrossRef]
  28. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  29. A. Weiner, Ultrafast Optics (Wiley, 2011).
  30. E. D. Diebold, N. K. Hon, Z. Tan, J. Chou, T. Sienicki, C. Wang, and B. Jalali, “Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide,” Opt. Express 19, 23809–23817 (2011). [CrossRef]
  31. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999). [CrossRef]
  32. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008). [CrossRef]
  33. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007). [CrossRef]
  34. Z. Jiang and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998). [CrossRef]
  35. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003). [CrossRef]
  36. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31, 540–542 (2006). [CrossRef]
  37. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003). [CrossRef]
  38. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15, 226–228 (2005). [CrossRef]
  39. K. G. Petrillo, J. R. Stroud, and M. A. Foster, “An all-optical sample-and-hold architecture incorporating amplitude jitter suppression,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2B.7.
  40. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009). [CrossRef]
  41. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006). [CrossRef]
  42. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azana, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15, 4597–4616 (2007).
  43. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20, 19612–19617 (2012). [CrossRef]
  44. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964). [CrossRef]
  45. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988). [CrossRef]
  46. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef]
  47. D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20, 487–489 (2008). [CrossRef]
  48. N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284, 3693–3705 (2011). [CrossRef]
  49. S. Thomas, A. Malacarne, F. Fresi, L. Potì, and J. Azaña, “Fiber-based programmable picosecond optical pulse shaper,” J. Lightwave Technol. 28, 1832–1843 (2010). [CrossRef]
  50. E. Hellström, H. Sunnerud, M. Westlund, and M. Karlsson, “Third-order dispersion compensation using a phase modulator,” J. Lightwave Technol. 21, 1188–1197 (2003). [CrossRef]
  51. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Electrooptic phase modulation of stretched 250  fs pulses for suppression of third-order fiber dispersion in transmission,” IEEE Photon. Technol. Lett. 11, 1461–1463 (1999). [CrossRef]
  52. T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26, 647–649 (2001). [CrossRef]
  53. C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37, 20–32 (2001). [CrossRef]
  54. B. H. Kolner, “Electro-optic time lenses for shaping and imaging optical waveforms,” in Broadband Optical Modulators: Science, Technology, and Applications, A. Chen and E. Murphy, eds. (CRC Press, 2011), Chap. 19.
  55. J. A. Giordmaine, M. A. Duguay, and J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968). [CrossRef]
  56. M. A. Duguay and J. W. Hansen, “Compression of pulses from a modelocked He-Ne laser,” Appl. Phys. Lett. 14, 14–16 (1969). [CrossRef]
  57. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light beam into a train of subnanosecond pulses using frequency modulation and the dispersion of a near resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975). [CrossRef]
  58. J. K. Wigmore and D. R. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978). [CrossRef]
  59. B. H. Kolner, “Active pulse compression using an integrated electro-optic phase modulator,” Appl. Phys. Lett. 52, 1122–1124 (1988). [CrossRef]
  60. M. T. Kauffman, A. A. Godil, B. A. Auld, W. C. Banyai, and D. M. Bloom, “Applications of time lens optical systems,” Electron. Lett. 29, 268–269 (1993). [CrossRef]
  61. A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994). [CrossRef]
  62. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, “Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation,” Electron. Lett. 36, 1644–1646 (2000). [CrossRef]
  63. Y. Shen, G. L. Carr, J. B. Murphy, T. Y. Tsang, X. Wang, and X. Yang, “Electro-optic time lensing with an intense single-cycle terahertz pulse,” Phys. Rev. A 81, 053835 (2010). [CrossRef]
  64. L. K. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36, 795–801 (2000). [CrossRef]
  65. T. Hirooka and M. Nakazawa, “All-optical 40 GHz time-domain Fourier transformation using XPM With a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869–1871 (2008). [CrossRef]
  66. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20, 1097–1099 (2008). [CrossRef]
  67. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. I. System configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000). [CrossRef]
  68. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. II. System performance,” IEEE J. Quantum Electron. 36, 649–655 (2000). [CrossRef]
  69. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33, 1047–1049 (2008). [CrossRef]
  70. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008). [CrossRef]
  71. J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun. 283, 2611–2614 (2010). [CrossRef]
  72. A. Pasquazi, Y. Y. Park, S. T. Chu, B. E. Little, F. Légaré, R. Morandotti, J. Azana, and D. J. Moss, “Time-lens measurement of subpicosecond optical pulses in CMOS-compatible high-index glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 629–636 (2012). [CrossRef]
  73. E. Palushani, L. K. Oxenlowe, M. Galili, H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45, 1317–1324 (2009). [CrossRef]
  74. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006). [CrossRef]
  75. E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef]
  76. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010). [CrossRef]
  77. C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994). [CrossRef]
  78. V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, D. Chang, C. Langrock, M. M. Fejer, and M. Ibsen, “104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging,” Opt. Express 21, 196–203 (2013). [CrossRef]
  79. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994). [CrossRef]
  80. D. H. Broaddus, M. A. Foster, O. Kuzucu, K. W. Koch, and A. L. Gaeta, “Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMK6.
  81. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19, B825–B835 (2011). [CrossRef]
  82. E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-toWDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron. 18, 681–688 (2012). [CrossRef]
  83. K. G. Petrillo and M. A. Foster, “Scalable ultrahigh-speed optical transmultiplexer using a time lens,” Opt. Express 19, 14051–14059 (2011). [CrossRef]
  84. K. G. Petrillo and M. A. Foster, “Full 160 Gb/s OTDM to 16×10 Gb/s WDM conversion with a single nonlinear interaction,” Opt. Express 21, 508–518 (2013). [CrossRef]
  85. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988). [CrossRef]
  86. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29, 1470–1472 (2004). [CrossRef]
  87. M. Hanna, P.-A. Lacourt, S. Poinsot, and J. Dudley, “Optical pulse generation using soliton-assisted time-lens compression,” Opt. Express 13, 1743–1748 (2005). [CrossRef]
  88. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120 fs laser pulses at 1 GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011). [CrossRef]
  89. H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenløwe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express 19, B343–B349 (2011). [CrossRef]
  90. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32, 1408–1410 (2007). [CrossRef]
  91. Y. Dai and C. Xu, “Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop,” Opt. Express 17, 6584–6590 (2009). [CrossRef]
  92. L. F. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2002), paper CPDBl.
  93. L. A. Jiang, M. E. Grein, H. A. Haus, E. P. Ippen, and H. Yokoyama, “Timing jitter eater for optical pulse trains,” Opt. Lett. 28, 78–80 (2003). [CrossRef]
  94. M. Romagnoli, P. Franco, R. Corsini, A. Schiffini, and M. Midrio, “Time-domain Fourier optics for polarization-mode dispersion,” Opt. Lett. 24, 1197–1199 (1999). [CrossRef]
  95. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16, 1059–1061 (2004). [CrossRef]
  96. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms,” Opt. Lett. 24, 783–785 (1999). [CrossRef]
  97. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “640  GHz real-time recording using temporal imaging,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA6.
  98. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17, 4324–4329 (2009). [CrossRef]
  99. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18, 14262–14269 (2010). [CrossRef]
  100. R. Salem, N. Ophir, X. Zhu, and K. Bergman, “Rapid eye diagram generation of a 640 Gb/s OTDM signal using a time lens,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2013), paper CM4G.1.
  101. Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett. 37, 4892–4894 (2012). [CrossRef]
  102. I. P. Christov, “Theory of a time telescope,” Opt. Quantum Electron. 22, 473–479 (1990). [CrossRef]
  103. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3, 581–585 (2009). [CrossRef]
  104. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17, 5691–5697 (2009). [CrossRef]
  105. M. Tsang and D. Psaltis, “Dispersion and nonlinearity compensation by spectral phase conjugation,” Opt. Lett. 28, 1558–1560 (2003). [CrossRef]
  106. D. M. Marom, D. Panasenko, S. Pang-Chen, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7, 683–693 (2001). [CrossRef]
  107. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17, 20605–20614 (2009). [CrossRef]
  108. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481, 62–65 (2012). [CrossRef]
  109. M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited