OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 3 — Sep. 30, 2013

Low-noise optical amplification and signal processing in parametric devices

Zhi Tong and Stojan Radic  »View Author Affiliations


Advances in Optics and Photonics, Vol. 5, Issue 3, pp. 318-384 (2013)
http://dx.doi.org/10.1364/AOP.5.000318


View Full Text Article

Enhanced HTML    Acrobat PDF (2764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent progress in low-noise optical amplification and signal processing has raised prospects of practical devices operating below the conventional quantum limit. We review the basic principles, practical implementation, and performance of such devices. In particular, we focus on the operation and limitations of χ ( 3 ) -based nonlinear platforms, such as silica high-confinement fiber. Classified by the parametric process application, we discuss the use of low-noise parametric mixers as optical amplifiers, phase regenerators, wavelength converters, and signal multicasters.

© 2013 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(140.4480) Lasers and laser optics : Optical amplifiers
(270.6570) Quantum optics : Squeezed states
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: May 3, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: July 2, 2013
Published: August 23, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Zhi Tong and Stojan Radic, "Low-noise optical amplification and signal processing in parametric devices," Adv. Opt. Photon. 5, 318-384 (2013)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-5-3-318


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus and J. A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev. 128, 2407–2413 (1962). [CrossRef]
  2. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982). [CrossRef]
  3. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  4. R. J. Mears, L. I. Reekie, M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987). [CrossRef]
  5. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002). [CrossRef]
  6. M. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  7. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994).
  8. G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4, 316–319 (2010). [CrossRef]
  9. A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states.” Nat. Photonics 5, 52–60 (2011). [CrossRef]
  10. P. K. Lam, T. C. Ralph, E. H. Huntington, and H.-A. Bachor, “Noiseless signal amplification using positive electro-optic feedforward,” Phys. Rev. Lett. 79, 1471–1474 (1997). [CrossRef]
  11. J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993). [CrossRef]
  12. R. Boyd, Nonlinear Optics (Academic, 2008).
  13. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004). [CrossRef]
  14. J. A. Levenson, I. Abram, T. Rivera, P. Fayolle, J. C. Garreau, and P. Grangier, “Quantum optical cloning amplifier,” Phys. Rev. Lett. 70, 267–270 (1993). [CrossRef]
  15. J. A. Levenson, I. Abram, T. Rivera, and Ph. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993). [CrossRef]
  16. K. Beincheik, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66, 399–401 (1995). [CrossRef]
  17. D. J. Lovering, J. A. Levenson, P. Vidakovic, J. Webjörn, and P. Russell, “Noiseless optical amplification in quasi-phase-matched bulk lithium niobate,” Opt. Lett. 21, 1439–1441 (1996). [CrossRef]
  18. J. A. Levenson, K. Bencheikh, D. J. Lovering, P. Vidakovic, and C. Simonneau, “Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions,” Quantum Semiclass. Opt. 9, 221–237 (1997). [CrossRef]
  19. B. M. Oliver, “Reply to H. A. Haus and C. H. Townes, ‘Comments on “Noise in photoelectric mixing’”,” Proc. IRE 50, 1544–1546 (1962).
  20. S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005). [CrossRef]
  21. Y. Yamamoto and K. Inoue, “Noise in amplifiers,” J. Lightwave Technol. 21, 2895–2915 (2003). [CrossRef]
  22. T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, 1988).
  23. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154 (2000). [CrossRef]
  24. E. Leckel, J. Sang, R. Muller, C. Ruck, and C. Hentschel, “Erbium-doped fiber amplifier test system,” Hewlett-Packard J. 46, 13–19 (1995).
  25. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express 13, 4986–5012 (2005). [CrossRef]
  26. C. Buczek, R. J. Freiberg, and M. L. Skolnick, “Laser injection locking,” Proc. IEEE 61, 1411–1431 (1973). [CrossRef]
  27. K. Inoue and T. Mukai, “Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier,” J. Lightwave Technol. 20, 969–974 (2002). [CrossRef]
  28. R. P. Tapster, J. G. Rarity, and J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1988). [CrossRef]
  29. S. M. Barnett and C. R. Gilson, “Photon-number fluctuations in phase-sensitive linear amplifiers,” Phys. Rev. A 40, 6314–6320 (1989). [CrossRef]
  30. C. J. McKinstrie, M. G. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006). [CrossRef]
  31. M. Scully and M. S. Zubairy, Quantum Optics (Cambridge, 1997).
  32. M. C. Teich and B. E. A. Saleh, “Squeezed states of light,” Quantum Opt. 1, 153–191 (1989). [CrossRef]
  33. R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987). [CrossRef]
  34. H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE 50, 1604–1608 (1962). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  36. S. Radic, “Parametric amplification and processing in optical fibers,” Laser Photon. Rev. 2, 498–513 (2008). [CrossRef]
  37. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002). [CrossRef]
  38. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2007).
  39. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432–444 (1979). [CrossRef]
  40. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  41. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58–66 (2007). [CrossRef]
  42. A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16–18 (1977). [CrossRef]
  43. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  44. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef]
  45. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
  46. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source for polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  47. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000). [CrossRef]
  48. W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communications Conference, OSA Technical Digest (Optical Society of America, 2004), paper MF78.
  49. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  50. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B60 (2010). [CrossRef]
  51. R. Weerasuriya, S. Sygletos, S. K. Ibrahim, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Generation of frequency symmetric signals from a BPSK input for phase sensitive amplification,” in Optical Fiber Communications Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWT6.
  52. Z. Tong, C. Lundström, P. A. Andrekson, M. Karlsson, and A. Bogris, “Ultra-low noise, broadband phase-sensitive amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 18, 1016–1032 (2012). [CrossRef]
  53. C. J. McKinstrie, M. Karlsson, and Z. Tong, “Field-quadrature and photon-number correlations produced by parametric process,” Opt. Express 18, 19792–19823 (2010). [CrossRef]
  54. Z. Tong, A. Bogris, C. Lundström, C. J. McKinstrie, M. Vasilyev, M. Karlsson, and P. A. Andrekson, “Modeling and measurement of noise figure in a cascaded non-degenerate phase-sensitive parametric amplifier,” Opt. Express 18, 14820–14835 (2010). [CrossRef]
  55. E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846–853 (1994). [CrossRef]
  56. P. Kylemark, M. Karlsson, and P. A. Andrekson, “Gain and wavelength dependence of the noise-figure in fiber optical parametric amplifiers,” IEEE Photon. Technol. Lett. 18, 1255–1257 (2006). [CrossRef]
  57. Z. Tong, A. Bogris, M. Karlsson, and P. A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pump fiber optical parametric amplifiers,” Opt. Express 18, 2884–2893 (2010). [CrossRef]
  58. M. Marhic and C. Hsia, “Optical amplification and squeezed light generation in fibre interferometers performing degenerate four-wave mixing,” Quantum Opt. 3, 341–358 (1991). [CrossRef]
  59. J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements—Part I. General energy relations,” Proc. IRE 44, 904–913 (1956). [CrossRef]
  60. H. Takahasi, “Information theory of quantum-mechanical channels,” in Advances in Communication Systems, A. V. Balakrishan, ed. (Academic, 1965), pp. 227–310.
  61. M. T. Raiford, “Statistical dynamics of quantum oscillators and parametric amplification in a single mode,” Phys. Rev. A 2, 1541–1558 (1970). [CrossRef]
  62. D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974). [CrossRef]
  63. R. Loudon, “Theory of noise accumulation in linear optical-amplifier chains,” IEEE J. Quantum Electron. 21, 766–773 (1985). [CrossRef]
  64. H. P. Yuen, “Design of transparent optical networks by using novel quantum amplifiers and sources,” Opt. Lett. 12, 789–791 (1987). [CrossRef]
  65. L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986). [CrossRef]
  66. M. Shirasaki and H. A. Haus, “Squeezing of pulses in a nonlinear interferometer,” J. Opt. Soc. Am. B 7, 30–34 (1990). [CrossRef]
  67. K. Bergman and H. A. Haus, “Squeezing in fibers with optical pulses,” Opt. Lett. 16, 663–665 (1991). [CrossRef]
  68. M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27, 210–211 (1991). [CrossRef]
  69. G. Bartolini, R. D. Li, P. Kumar, W. Riha, and K. V. Reddy, “1.5-μm phase-sensitive amplifier for ultrahigh-speed communications,” in Optical Fiber Communications Conference, OSA Technical Digest (Optical Society of America, 1994), pp. 202–203.
  70. W. Imajuku and A. Takada, “In-line phase-sensitive amplifier with optical-PLL-controlled internal pump light source,” Electron. Lett. 33, 2155–2156 (1997). [CrossRef]
  71. A. Takada and W. Imajuku, “In-line optical phase-sensitive amplifier employing pump laser injection-locked to input signal light,” Electron. Lett. 34, 274–276 (1998). [CrossRef]
  72. W. Imajuku and A. Takada, “Error-free operation of in-line phase-sensitive amplifier,” Electron. Lett. 34, 1673–1674 (1998). [CrossRef]
  73. W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3  dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35, 1954–1955 (1999). [CrossRef]
  74. W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3  dB quantum limit,” Electron. Lett. 36, 63–64 (2000). [CrossRef]
  75. D. Levandovsky, M. Vasilyev, and P. Kumar, “Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier,” Opt. Lett. 24, 984–986 (1999). [CrossRef]
  76. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985). [CrossRef]
  77. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993). [CrossRef]
  78. C. Kim, R. Li, and R. Kumar, “Deamplification response of a traveling-wave phase-sensitive optical parametric amplifier,” Opt. Lett. 19, 132–134 (1994). [CrossRef]
  79. K. Bencheikh, O. Lopez, I. Abram, and J. A. Levenson, “Improvement of photodetection quantum efficiency by noiseless optical preamplification,” Appl. Phys. Lett. 66, 399–401 (1995). [CrossRef]
  80. T. Umeki, O. Tadanaga, A. Takada, and M. Asobe, “Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides,” Opt. Express 19, 6326–6332 (2011). [CrossRef]
  81. E. Lantz and F. Devaux, “Parametric amplification of images: from time gating to noiseless amplification,” IEEE J. Sel. Top. Quantum Electron. 14, 635–647 (2008). [CrossRef]
  82. M. Annamalai and M. Vasilyev, “Phase-sensitive multimode parametric amplification in a parabolic-index waveguide,” IEEE Photon. Technol. Lett. 24, 1949–1952 (2012). [CrossRef]
  83. M. Kolobov, “The spatial behavior of nonclassical light,” Rev. Mod. Phys. 71, 1539–1589 (1999). [CrossRef]
  84. S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83, 1938–1941 (1999). [CrossRef]
  85. F. Devaux and E. Lantz, “Gain in phase sensitive parametric image amplification,” Phys. Rev. Lett. 85, 2308–2311 (2000). [CrossRef]
  86. A. Mosset, F. Devaux, and E. Lantz, “Spatially noiseless optical amplification of images,” Phys. Rev. Lett. 94, 223603 (2005). [CrossRef]
  87. L. Lopez, N. Treps, B. Chalopin, C. Fabre, and A. Maître, “Quantum processing of images by continuous wave optical parametric amplification,” Phys. Rev. Lett. 100, 013604 (2008). [CrossRef]
  88. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012). [CrossRef]
  89. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and Robert Lingle, “Space-division multiplexing over 10  km of three-mode fiber using coherent 6×6 MIMO processing,” in Optical Fiber Communications Conference, OSA Technical Digest (Optical Society of America, 2011), paper PDPB10.
  90. H. P. Yuen, “Reduction of quantum fluctuation and suppression of the Gordon–Haus effect with phase-sensitive linear amplifiers,” Opt. Lett. 17, 73–75 (1992). [CrossRef]
  91. Y. Mu and C. M. Savage, “Parametric amplifiers in phase-noise-limited optical communications,” J. Opt. Soc. Am. B 9, 65–70 (1992). [CrossRef]
  92. R. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase sensitive optical amplifiers,” J. Lightwave Technol. 12, 541–549 (1994). [CrossRef]
  93. J. N. Kutz, C. V. Hile, W. L. Kath, R.-D. Li, and P. Kumar, “Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers,” J. Opt. Soc. Am. B 11, 2112–2123 (1994). [CrossRef]
  94. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” in Optical Fiber Telecommunications VB, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic, 2008), pp. 23–94.
  95. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008). [CrossRef]
  96. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). [CrossRef]
  97. R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3, 821–833 (2011). [CrossRef]
  98. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004). [CrossRef]
  99. K. Croussore, I. Kim, Y. Han, C. Kim, and G. Li, “Demonstration of phase regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13, 3945–3950 (2005). [CrossRef]
  100. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006). [CrossRef]
  101. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007). [CrossRef]
  102. A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers,” IEEE Photon. Technol. Lett. 18, 2144–2146 (2006). [CrossRef]
  103. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010). [CrossRef]
  104. A. Bogris, D. Syvridis, and C. Efstathiou, “Noise properties of degenerate dual pump phase sensitive amplifiers,” J. Lightwave Technol. 28, 1209–1217 (2010). [CrossRef]
  105. C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007). [CrossRef]
  106. R. Slavík, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, P. Petropoulos, and D. J. Richardson, “All-optical phase-regenerative multicasting of 40  Gbit/s DPSK signal in a degenerate phase sensitive amplifier,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2010), paper Mo.1.A.2.
  107. R. Slavik, F. Parmigiani, J. Kakande, M. Westlund, M. Sköld, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. Richardson, “Robust design of all-optical PSK regenerator based on phase sensitive amplification,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OMT2.
  108. R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Periklis, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40  Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30, 512–520 (2012). [CrossRef]
  109. R. Slavík, A. Bogris, F. Parmigiani, J. Kakande, M. Westlund, M. Sköld, L. Grüner-Nielsen, R. Phelan, D. Syvridis, P. Petropoulos, and D. J. Richardson, “Coherent all-optical phase and amplitude regenerator of binary phase-encoded signals,” IEEE J. Sel. Top. Quantum Electron. 18, 859–869 (2012). [CrossRef]
  110. M. A. Ettabib, L. Jones, J. Kakande, R. Slavík, F. Parmigiani, X. Feng, F. Poletti, G. M. Ponzo, J. A. Shi, M. N. Petrovich, W. H. Loh, P. Petropoulos, and D. J. Richardson, “Phase sensitive amplification in a highly nonlinear lead-silicate fiber,” Opt. Express 20, 1629–1634 (2012). [CrossRef]
  111. M. A. Ettabib, F. Parmigiani, X. Feng, L. Jones, J. Kakande, R. Slavík, F. Poletti, G. M. Ponzo, J. Shi, M. N. Petrovich, W. H. Loh, P. Petropoulos, and D. J. Richardson, “Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber,” Opt. Express 20, 27419–27424 (2012). [CrossRef]
  112. M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20, 13164–13172 (2012). [CrossRef]
  113. A. Szabó, B. J. Puttnam, D. Mazroa, S. Shinada, and N. Wada, “Investigation of an all-optical black-box PPLN-PPLN phase regenerator,” IEEE Photon. Technol. Lett. 24, 2087–2089 (2012). [CrossRef]
  114. T. Umeki, H. Takenouchi, and M. Asobe, “First demonstration of in-line phase sensitive amplifier based on PPLN waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Tu.3.E.1.
  115. D. Mazroa, B. J. Puttnam, S. Shinada, and N. Wada, “SBS free SOA-PPLN phase sensitive amplifier,” in OptoElectronics and Communications Conference (IEEE, 2011), pp. 262–263.
  116. T. Richter, C. Meuer, R. Ludwig, and C. Schubert, “Black-box phase-sensitive fiber-optic parametric amplifier assisted by a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3B.4.
  117. R. Neo, J. Schröder, Y. Paquot, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide,” Opt. Express 21, 7926–7933 (2013). [CrossRef]
  118. N. Kang, A. Fadil, M. Pu, H. Ji, H. Hu, E. Palushani, D. Vukovic, J. Seoane, H. Ou, K. Rottwitt, and C. Peucheret, “Experimental demonstration of phase-sensitive parametric processes in a nano-engineered silicon waveguide,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2013), paper CM4D.7.
  119. T. Umeki, M. Asobe, H. Takara, T. Kobayashi, H. Kubota, H. Takenouchi, and Y. Miyamoto, “First demonstration of multi-span transmission using phase and amplitude regeneration in PPLN-based PSA,” in Optical Fiber Communication Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.7.
  120. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5, 748–752 (2011). [CrossRef]
  121. J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Optical QPSK regeneration using dual-pump degenerate phase-sensitive amplification,” in OptoElectronics and Communications Conference (IEEE, 2012), pp. 907–908.
  122. S. Sygletos, P. Frascella, S. K. Ibrahim, L. Grüner-Nielsen, R. Phelan, J. O’Gorman, and A. D. Ellis, “A practical phase sensitive amplification scheme for two channel phase regeneration,” Opt. Express 19, B938–B945 (2011). [CrossRef]
  123. S. Sygletos, M. J. Power, F. C. Garcia Gunning, R. P. Webb, R. J. Manning, and A. Ellis, “Simultaneous dual channel phase regeneration in SOAs,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Tu.1.A.2.
  124. C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005). [CrossRef]
  125. C. McKinstrie, S. Radic, and M. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12, 5037–5066 (2004). [CrossRef]
  126. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990). [CrossRef]
  127. R. Loudon, The Quantum Theory of Light (Oxford, 2000).
  128. M. V. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express 13, 7563–7571 (2005). [CrossRef]
  129. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992). [CrossRef]
  130. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004). [CrossRef]
  131. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550  nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008). [CrossRef]
  132. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef]
  133. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010). [CrossRef]
  134. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994). [CrossRef]
  135. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers,” Opt. Lett. 21, 1906–1908 (1996). [CrossRef]
  136. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002). [CrossRef]
  137. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16, 551–553 (2004). [CrossRef]
  138. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a fiber,” Opt. Express 14, 8989–8994 (2006). [CrossRef]
  139. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010). [CrossRef]
  140. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Wavelength translation across 210  nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23, 109–111 (2011). [CrossRef]
  141. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989). [CrossRef]
  142. P. L. Voss, K. G. Köprülü, and P. Kumar, “Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing,” J. Opt. Soc. Am. B 23, 598–610 (2006). [CrossRef]
  143. Z. Tong, C. Lundström, M. Karlsson, M. Vasilyev, and P. A. Andrekson, “Noise performance of a frequency nondegenerate phase-sensitive amplifier with unequalized inputs,” Opt. Lett. 36, 722–724 (2011). [CrossRef]
  144. M. Vasilyev, “Phase-sensitive amplification in optical fibers,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2005), paper FThB1.
  145. H. P. Yuen, “Two-photon coherent states of the radiation,” Phys. Rev. A 13, 2226–2243 (1976). [CrossRef]
  146. H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4, 334–336 (1979). [CrossRef]
  147. P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30, 1568–1571 (1984). [CrossRef]
  148. M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, “Squeezing of classical noise by nondegenerate four-wave mixing in an optical fiber,” Opt. Lett. 10, 514–516 (1985). [CrossRef]
  149. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985). [CrossRef]
  150. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986). [CrossRef]
  151. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59, 2555–2557 (1987). [CrossRef]
  152. O. Aytur and P. Kumar, “Pulsed twin beams of light,” Phys. Rev. Lett. 65, 1551–1554 (1990). [CrossRef]
  153. I. Bar-Joseph, A. A. Friesem, A. G. Waarts, and H. H. Yaffe, “Parametric interaction of a modulated wave in a single-mode fiber,” Opt. Lett. 11, 534–536 (1986). [CrossRef]
  154. R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, “In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier,” IEEE Photon. Technol. Lett. 17, 1845–1847 (2005). [CrossRef]
  155. O. K. Lim, V. S. Grigoryan, M. Shin, and P. Kumar, “Ultra-low-noise inline fiber-optic phase-sensitive amplifier for analog optical signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OML3. [Note that the NF measurement in this reference was for signal/idler wave separately; therefore the combined NF should still be above 3 dB, according to the discussion on separate and combined NF definitions.]
  156. A. Agarwal, T. Banwell, and T. K. Woodward, “RF photonic link employing optical phase sensitive amplification,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3B.5.
  157. R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, “Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication,” Electron. Lett. 41, 1072–1074 (2005). [CrossRef]
  158. T. Umeki, H. Takara, Y. Miyamoto, and M. Asobe, “3  dB signal-ASE beat noise reduction of coherent multi-carrier signal utilizing phase sensitive amplification,” Opt. Express 20, 24727–24734 (2012). [CrossRef]
  159. M. Jamshidifar, A. Vedadi, and M. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270  nm gain bandwidth,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Mo.1.1.4.
  160. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13, 10483–10493 (2005). [CrossRef]
  161. J. Kim, O. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19, 247–251 (2001). [CrossRef]
  162. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010). [CrossRef]
  163. J. Kakande, F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Experimental investigation of wide bandwidth single and dual pump non-degenerate phase sensitive amplifiers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWT3.
  164. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17, 20393–20400 (2009). [CrossRef]
  165. B. J. Puttnam, D. Mazroa, S. Shinada, and N. Wada, “Large phase sensitive gain in periodically-poled lithium-niobate with high pump power,” IEEE Photon. Technol. Lett. 23, 426–428 (2011). [CrossRef]
  166. R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line phase-sensitive amplification of multi-channel CW signals based on frequency non-degenerate four-wave-mixing in fiber,” Opt. Express 16, 9046–9053 (2008). [CrossRef]
  167. Z. Tong, C. J. McKinstrie, C. Lundström, M. Karlsson, and P. A. Andrekson, “Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers,” Opt. Express 18, 15426–15439 (2010). [CrossRef]
  168. M. E. Marhic, “Quantum-limited noise figure of networks of linear optical elements,” J. Opt. Soc. Am. B 30, 1462–1472 (2013). [CrossRef]
  169. Z. Tong, “Optical phase-sensitive amplification: towards ultra-low noise transmission links,” in Frontiers in Optics Conference, OSA Technical Digest (Optical Society of America, 2012), paper FW1D.4.
  170. V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broadband WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett. 14, 1199–1201 (2002). [CrossRef]
  171. J. C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication (IEEE, 2002), symposium 3.04.
  172. Z. Tong, C. Lundström, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified DWDM DQPSK signals using free-running lasers with 6  dB link SNR improvement over EDFA-based systems,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2010), paper PDP1.3.
  173. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011). [CrossRef]
  174. G. Li, “Optical communications: amplifying to perfection,” Nat. Photonics 5, 385–386 (2011). [CrossRef]
  175. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2009), paper OTuF2.
  176. L. Boivin, F. X. Kärtner, and H. A. Haus, “Analytical solution to the quantum field theory of self-phase modulation with a finite response time,” Phys. Rev. Lett. 73, 240–243 (1994). [CrossRef]
  177. P. L. Voss and P. Kumar, “Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters,” J. Opt. B Quantum Semiclass. Opt. 6, S762–S770 (2004). [CrossRef]
  178. B. Corcoran, S. L. Olsson, C. Lundström, M. Karlsson, and P. Andrekson, “Phase-sensitive optical pre-amplifier implemented in an 80  km DQPSK link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.4.
  179. S. L. Olsson, B. Corcoran, C. Lundström, E. Tipsuwannakul, S. Sygletos, A. D. Ellis, Z. Tong, M. Karlsson, and P. Andrekson, “Optical injection-locking-based pump recovery for phase-sensitively amplified links,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.3.
  180. S. L. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.2.F.1.
  181. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101, 163901 (2008). [CrossRef]
  182. C. J. McKinstrie, N. Alic, Z. Tong, and M. Karlsson, “Higher-capacity communication links based on two-mode phase-sensitive amplifiers,” Opt. Express 19, 11977–11991 (2011). [CrossRef]
  183. H. Maeda, G. Funatsu, and A. Naka, “Ultra-long-span 500  km 16×10  Gbit/s WDM unrepeatered transmission using RZ-DPSK format,” Electron. Lett. 41, 34–35 (2005). [CrossRef]
  184. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160  Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, 2002), pp. 233–304.
  185. Y. Tian, Y.-K. Huang, S. Zhang, P. R. Prucnal, and T. Wang, “Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy,” Opt. Express 21, 5099–5106 (2013). [CrossRef]
  186. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,” in Technical Digest of the International Conference on Integrated Optics and Optical Fiber Communications (IEEE, 1995), paper WD2-1.
  187. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004). [CrossRef]
  188. L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, B. Pálsdóttir, S. Dasgupta, D. Richardson, C. Lundström, S. L. Olsson, and P. A. Andrekson, “Brillouin suppressed highly nonlinear fibers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper We.1.F.1.
  189. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001). [CrossRef]
  190. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21, 1807–1809 (2009). [CrossRef]
  191. Y. Takushima and T. Okoshi, “Suppression of simulated Brillouin scattering using optical isolators,” Electron. Lett. 28, 1155–1157 (1992). [CrossRef]
  192. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express 20, 18611–18619 (2012). [CrossRef]
  193. C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10  dB net gain without pump dithering,” IEEE Photon. Technol. Lett. 25, 234–237 (2013). [CrossRef]
  194. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008). [CrossRef]
  195. M. Akbulut, A. M. Weiner, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays,” J. Lightwave Technol. 24, 251–261 (2006). [CrossRef]
  196. C. Lundström, B. Corcoran, S. L. Olsson, Z. Tong, M. Karlsson, and P. Andrekson, “Short-pulse amplification in a phase-sensitive amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1C.1.
  197. T. Torounidis, H. Sunnerud, P. O. Hedekvist, and P. A. Andrekson, “Amplification of WDM signals in fiber-based optical parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 1061–1063 (2003). [CrossRef]
  198. N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “1  Tb/s DWDM long-haul transmission employing a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 22, 1171–1173 (2010). [CrossRef]
  199. M. E. Marhic, “Noise figure of hybrid optical parametric amplifiers,” Opt. Express 20, 28752–28757 (2012). [CrossRef]
  200. C. Lundström, B. Puttnam, Z. Tong, M. Karlsson, and P. A. Andrekson, “Experimental characterization of the phase squeezing property of a phase-sensitive parametric amplifier in non-degenerate idler configuration,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2010), paper Th.10.C1.
  201. C. Lundström, Z. Tong, M. Karlsson, and P. A. Andrekson, “Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier,” Opt. Lett. 36, 4356–4358 (2011). [CrossRef]
  202. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20, 21400–21412 (2012). [CrossRef]
  203. B. J. Puttnam, D. Mazroa, S. Shinada, and N. Wada, “Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides,” Opt. Express 19, B131–B139 (2011). [CrossRef]
  204. B. J. Puttnam, A. Szabo, D. Mazroa, S. Shinada, and N. Wada, “Multi-channel phase squeezing in a PPLN-PPLN PSA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.6.
  205. J. Kakande, P. Petropoulos, and D. J. Richardson, “Fiber optical parametric amplification of optical combs for enhanced performance and functionality,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011) paper Th.11.LeCervin.5.
  206. R. Slavík, J. Kakande, P. Petropoulos, and D. J. Richardson, “Processing of optical combs with fiber optic parametric amplifiers,” Opt. Express 20, 10059–10070 (2012). [CrossRef]
  207. C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, “Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber,” Opt. Express 16, 2720–2739 (2008). [CrossRef]
  208. B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, “Four-mode squeezing,” Phys. Rev. Lett. 58, 357–360 (1987). [CrossRef]
  209. C. McKinstrie, S. Radic, and C. Xie, “Parametric instabilities driven by orthogonal pump waves in birefringent fibers,” Opt. Express 11, 2619–2633 (2003). [CrossRef]
  210. T. Richter, B. Corcoran, S. L. Olsson, C. Lundström, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.F.1.
  211. C.-S. Brès, A. O. J. Wiberg, B. P. P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004 (2009). [CrossRef]
  212. C.-S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photon. Technol. Lett. 22, 332–334 (2010). [CrossRef]
  213. A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23, 1570–1572 (2011). [CrossRef]
  214. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual pump four-wave mixing in a silicon waveguide,” Opt. Express 19, 24448–24453 (2011). [CrossRef]
  215. B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29, 3515–3522 (2011). [CrossRef]
  216. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012). [CrossRef]
  217. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20, 17610–17619 (2012). [CrossRef]
  218. P. Kylemark, J. Ren, M. Karlsson, S. Radic, C. J. McKinstrie, and P. A. Andrekson, “Noise in dual-pumped fiber-optical parametric amplifiers: theory and experiments,” J. Lightwave Technol. 25, 2837–2846 (2007). [CrossRef]
  219. Z. Tong, A. O. J. Wiberg, N. Alic, and S. Radic, “Noise performance of an eight-sideband parametric mixer,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh4I.5.
  220. C. K. Huynh, Z. Tong, E. Myslivets, A. O. J. Wiberg, J. R. Adleman, S. Zlatanovic, E. W. Jacobs, and S. Radic, “Noise performance of phase-insensitive multicasting in multi-stage parametric mixers,” Opt. Express 21, 804–814 (2013). [CrossRef]
  221. Z. Tong, A. O. J. Wiberg, E. Myslivets, C. K. Huynh, B. P. P. Kuo, N. Alic, and S. Radic, “Noise performance of a multi-sideband parametric multicasting mixer with normal dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW3C.4.
  222. Z. Tong, A. O. J. Wiberg, E. Myslivets, C. K. Huynh, B. P. P. Kuo, N. Alic, and S. Radic, “Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion,” Opt. Express 21, 17659–17669 (2013). [CrossRef]
  223. S. Turitsyn, M. Sorokina, and S. Derevyanko, “Dispersion-dominated nonlinear fiber-optic channel,” Opt. Lett. 37, 2931–2933 (2012). [CrossRef]
  224. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20, 19363–19373 (2012). [CrossRef]
  225. Z. Tong, L. Liu, A. O. J. Wiberg, V. Ataie, E. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “First demonstration of four-mode phase-sensitive multicasting of optical channel,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.6.
  226. L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag. 37(2), 67–73 (1999). [CrossRef]
  227. A. O. Wiberg, C. Brès, B. P. Kuo, J. Chavez Boggio, N. Alic, and S. Radic, “Polychromatic sampling for high-speed real-time processing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWB1.
  228. C. Brès, A. O. Wiberg, B. P. P. Kuo, J. M. Chavez Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical demultiplexing of 320  Gb/s to 8×40  Gb/s in single parametric gate,” J. Lightwave Technol. 28, 434–442 (2010). [CrossRef]
  229. A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40  GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.2.
  230. A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of parallel polychromatic sampling based analog-to-digital conversion at 8  GS/s,” in CLEO: Science and Innovations, OSA Technical Digest (Optical Society of America, 2012), paper CM2B.5.
  231. C. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express 19, 3531–3541 (2011). [CrossRef]
  232. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18, 670–680 (2012). [CrossRef]
  233. Y. Park, T. Ahn, and J. Azaña, “Stabilization of a fiber-optic two-arm interferometer for ultra-short pulse signal processing applications,” Appl. Opt. 47, 417–421 (2008). [CrossRef]
  234. H. P. Robertson, “The uncertainty principle,” Phys. Rev. 34, 163–164 (1929). [CrossRef]
  235. H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1602–1604 (1998). [CrossRef]
  236. E. Desuvire, “Comments on ‘The noise figure of optical amplifiers’,” IEEE Photon. Technol. Lett. 11,620–621 (1999). [CrossRef]
  237. G. Obarski, “Precise calibration for optical amplifier noise figure measurement using the RIN subtraction method,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2003), paper ThZ3.
  238. F. W. Willems, J. C. van der Plaats, C. Hentschel, and E. Leckel, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest of the Symposium on Optical Fiber Measurements (National Institute of Standards and Technology, 1994), pp. 7–9.
  239. M. Movassaghi, M. K. Jackson, V. M. Smith, and W. J. Hallam, “Noise figure of erbium-doped fiber amplifiers in saturated operation,” J. Lightwave Technol. 16, 812–817 (1998). [CrossRef]