OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 4 — Dec. 31, 2013

Modeling photonic crystal interfaces and stacks: impedance-based approaches

Felix J. Lawrence, C. Martijn de Sterke, Lindsay C. Botten, R. C. McPhedran, and Kokou B. Dossou  »View Author Affiliations


Advances in Optics and Photonics, Vol. 5, Issue 4, pp. 385-455 (2013)
http://dx.doi.org/10.1364/AOP.5.000385


View Full Text Article

Enhanced HTML    Acrobat PDF (2908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In many research areas, the reflective properties of a bulk medium are characterized by its impedance or an impedance-like quantity. Such a quantity is essential for the efficient design of stacked structures such as antireflection coatings and thin-film filters. For 2D photonic crystals and metamaterials, the literature contains multiple definitions of impedance, not all of which are consistent. We review these proposed definitions, evaluate their regions of applicability, and numerically test their accuracy in a variety of salient photonic crystal examples.

© 2013 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: February 28, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 27, 2013
Published: September 12, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Felix J. Lawrence, C. Martijn de Sterke, Lindsay C. Botten, R. C. McPhedran, and Kokou B. Dossou, "Modeling photonic crystal interfaces and stacks: impedance-based approaches," Adv. Opt. Photon. 5, 385-455 (2013)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-5-4-385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1955).
  2. E. Wolf and M. Born, Principles of Optics, 6th ed. (Pergamon, 1980).
  3. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  4. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
  5. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).
  6. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  7. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101 (2007). [CrossRef]
  8. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. M. de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  9. F. J. Lawrence, L. C. Botten, K. B. Dossou, R. C. McPhedran, and C. M. de Sterke, “Photonic-crystal surface modes found from impedances,” Phys. Rev. A 82, 53840 (2010). [CrossRef]
  10. P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012). [CrossRef]
  11. S. Boscolo, C. Conti, M. Midrio, and C. G. Someda, “Numerical analysis of propagation and impedance matching in 2-D photonic crystal waveguides with finite length,” J. Lightwave Technol. 20, 304–310 (2002). [CrossRef]
  12. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004). [CrossRef]
  13. A. Khavasi, M. Rezaei, M. Miri, and K. Mehrany, “Circuit model for efficient analysis and design of photonic crystal devices,” J. Opt. 14, 125502 (2012). [CrossRef]
  14. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003). [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]
  16. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999). [CrossRef]
  17. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999). [CrossRef]
  18. S. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996). [CrossRef]
  19. S. Enoch, G. Tayeb, and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals,” Opt. Commun. 161, 171–176 (1999). [CrossRef]
  20. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  21. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  22. J. Witzens, M. Lončar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002). [CrossRef]
  23. D. Chigrin, S. Enoch, C. S. Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003). [CrossRef]
  24. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef]
  25. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007). [CrossRef]
  26. Z. H. Wu, K. Xie, H. J. Yang, P. Jiang, and X. He, “All-angle self-collimation in two-dimensional rhombic-lattice photonic crystals,” J. Opt. 14, 015002 (2012). [CrossRef]
  27. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  28. T. P. White, L. C. Botten, C. M. de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33, 2644–2646 (2008). [CrossRef]
  29. S. G. Johnson, P. Bienstman, M. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002). [CrossRef]
  30. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001). [CrossRef]
  31. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102–1104 (2001). [CrossRef]
  32. K. B. Dossou, L. C. Botten, C. M. de Sterke, R. C. McPhedran, A. A. Asatryan, S. Chen, and J. Brnovic, “Efficient couplers for photonic crystal waveguides,” Opt. Commun. 265, 207–219 (2006). [CrossRef]
  33. S. Kuchinsky, V. Golyatin, and A. Kutikov, “Coupling in PBG material with high group index,” Proc. SPIE 5000, 59–70 (2003). [CrossRef]
  34. A. Talneau, P. Lalanne, M. Agio, and C. M. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett. 27, 1522–1524 (2002). [CrossRef]
  35. A. Talneau, M. Mulot, S. Anand, and P. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003). [CrossRef]
  36. M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471–4473 (2003). [CrossRef]
  37. P. Pottier, I. Ntakis, and R. De La Rue, “Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further device functionality,” Opt. Commun. 223, 339–347 (2003). [CrossRef]
  38. S. Lee, J. Choi, J. Kim, H. Y. Park, and C. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008). [CrossRef]
  39. T. T. Kim, S. G. Lee, M. W. Kim, and H. Y. Park, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009). [CrossRef]
  40. C. M. de Sterke, J. Walker, K. B. Dossou, and L. C. Botten, “Efficient slow light coupling into photonic crystals,” Opt. Express 15, 10984–10990 (2007). [CrossRef]
  41. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007). [CrossRef]
  42. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007). [CrossRef]
  43. Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D 40, 5873–5877 (2007). [CrossRef]
  44. T. Matsumoto, T. Asatsuma, and T. Baba, “Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components,” Appl. Phys. Lett. 91, 091117 (2007). [CrossRef]
  45. T. Baba, T. Matsumoto, and M. Echizen, “Finite difference time domain study of high efficiency photonic crystal superprisms,” Opt. Express 12, 4608–4613 (2004). [CrossRef]
  46. T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40, 5920–5924 (2001). [CrossRef]
  47. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  48. J. Ushida, M. Tokushima, M. Shirane, A. Gomyo, and H. Yamada, “Immittance matching for multidimensional open-system photonic crystals,” Phys. Rev. B 68, 155115 (2003). [CrossRef]
  49. P. Sanchis, J. Marti, B. Luyssaert, P. Dumon, P. Bienstman, and R. Baets, “Analysis and design of efficient coupling in photonic crystal circuits,” Opt. Quantum Electron. 37, 133–147 (2005). [CrossRef]
  50. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006). [CrossRef]
  51. B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778–780 (2007). [CrossRef]
  52. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 83501–83503 (2008). [CrossRef]
  53. W. Śmigaj and B. Gralak, “Semianalytical design of antireflection gratings for photonic crystals,” Phys. Rev. B 85, 035114 (2012). [CrossRef]
  54. B. Zhang and M. Li, “A new anti-reflection surface structure for photonic crystal slab lens,” Eur. Phys. J. D 45, 321–323 (2007). [CrossRef]
  55. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009). [CrossRef]
  56. G. Scherrer, M. Hofman, W. Śmigaj, B. Gralak, X. Melique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010). [CrossRef]
  57. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609 (2004). [CrossRef]
  58. P. Lorrain, D. R. Corson, and F. Lorrain, Electromagnetic Fields and Waves, 3rd ed. (Freeman, 1988).
  59. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  60. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011). [CrossRef]
  61. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B 77, 235445 (2008). [CrossRef]
  62. V. G. Veselago, “Electrodynamics of materials with negative index of refraction,” Phys. Usp. 46, 764–768 (2003). [CrossRef]
  63. V. G. Veselago, “Some remarks regarding electrodynamics of materials with negative refraction,” Appl. Phys. B 81, 403–407 (2005). [CrossRef]
  64. P. Rouard, “Étude des propriétés optiques des lames métalliques très minces,” Ann. Phys. (Paris) Ser. II 7, 291–384 (1937).
  65. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids, 3rd ed. (Academic, 1998).
  66. L. A. Catalán, “Some computed optical properties of antireflection coatings,” J. Opt. Soc. Am. 52, 437–439 (1962). [CrossRef]
  67. F. J. Lawrence, L. C. Botten, K. B. Dossou, C. M. de Sterke, and R. C. McPhedran, “Impedance of square and triangular lattice photonic crystals,” Phys. Rev. A 80, 023826 (2009). [CrossRef]
  68. M. Miri, A. Khavasi, K. Mehrany, and B. Rashidian, “Transmission-line model to design matching stage for light coupling into two-dimensional photonic crystals,” Opt. Lett. 35, 115–117 (2010). [CrossRef]
  69. J. H. Apfel, “Graphics in optical coating design,” Appl. Opt. 11, 1303–1312 (1972). [CrossRef]
  70. D. M. Whittaker, “Inhibited emission in photonic woodpile lattices,” Opt. Lett. 25, 779–781 (2000). [CrossRef]
  71. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000). [CrossRef]
  72. A. Modinos, N. Stefanou, and V. Yannopapas, “Applications of the layer-KKR method to photonic crystals,” Opt. Express 8, 197–202 (2001). [CrossRef]
  73. L. C. Botten, N. P. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001). [CrossRef]
  74. B. Gralak, S. Enoch, and G. Tayeb, “From scattering or impedance matrices to Bloch modes of photonic crystals,” J. Opt. Soc. Am. A 19, 1547–1554 (2002). [CrossRef]
  75. R. Smaâli, D. Felbacq, and G. Granet, “Bloch waves and non-propagating modes in photonic crystals,” Physica E 18, 443–451 (2003). [CrossRef]
  76. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  77. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
  78. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A 79, 399–416 (1907). [CrossRef]
  79. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  80. C. Kittel, Introduction to Solid State Physics, 3rd ed. (Wiley, 1966).
  81. J. Callaway, Quantum Theory of the Solid State (Academic, 1974).
  82. R. C. McPhedran, N. P. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. Sci. 41, 7808–7816 (2000). [CrossRef]
  83. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004). [CrossRef]
  84. R. V. Craster, J. Kaplunov, E. Nolde, and S. Guenneau, “Bloch dispersion and high frequency homogenization for separable doubly-periodic structures,” Wave Motion 49, 333–346 (2012). [CrossRef]
  85. T. Antonakakis, F. Baida, and A. Belkhir, “Homogenization techniques for periodic structures,” in Gratings: Theory and Numeric Applications, E. Popov, ed., 1st ed. (Presses Universitaires de Provence [PUP], 2012), Chap. 11.
  86. V. Heine, “On the general theory of surface states and scattering of electrons in solids,” Proc. Phys. Soc. 81, 300–310 (1963). [CrossRef]
  87. V. Heine, “Some theory about surface states,” Surf. Sci. 2, 1–7 (1964). [CrossRef]
  88. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  89. Z. Y. Li and K. M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [CrossRef]
  90. S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999). [CrossRef]
  91. S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, C. M. de Sterke, and Y. S. Kivshar, “Bloch-mode extraction from near-field data in periodic waveguides,” Opt. Lett. 34, 3776–3778 (2009). [CrossRef]
  92. A. A. Sukhorukov, S. Ha, I. V. Shadrivovć, D. A. Powell, and Y. S. Kivshar, “Dispersion extraction with near-field measurements in periodic waveguides,” Opt. Express 17, 3716–3721 (2009). [CrossRef]
  93. S. Ha, M. Spasenovi, A. A. Sukhorukovć, T. P. White, C. M. de Sterke, L. K. Kuipers, T. F. Krauss, and Y. S. Kivshar, “Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements,” J. Opt. Soc. Am. B 28, 955–963 (2011). [CrossRef]
  94. F. J. Lawrence, L. C. Botten, K. B. Dossou, R. C. McPhedran, and C. M. de Sterke, “A flexible Bloch mode method for computing complex band structures and impedances of two-dimensional photonic crystals,” J. Appl. Phys. 111, 013105 (2012). [CrossRef]
  95. Y. Hsue and T. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004). [CrossRef]
  96. A. Fallahi and C. Hafner, “Analysis of semi-infinite periodic structures using a domain reduction technique,” J. Opt. Soc. Am. A 27, 40–49 (2010). [CrossRef]
  97. C. R. Simovski, S. A. Tretyakov, and A. Schuchinsky, “EM characterisation theory,” in Nanostructured Metamaterials–Exchange between Experts in Electromagnetics and Material Science, A. F. DeBaas, ed. (European Commission, 2010), Chap. 4.1, pp. 96–122.
  98. C. Croënne, N. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008). [CrossRef]
  99. A. Andryieuski, R. Malureanu, and A. V. Lavrinenko, “Wave propagation retrieval method for metamaterials: unambiguous restoration of effective parameters,” Phys. Rev. B 80, 193101 (2009). [CrossRef]
  100. W. Śmigaj, P. Lalanne, J. Yang, T. Paul, C. Rockstuhl, and F. Lederer, “Closed-form expression for the scattering coefficients at an interface between two periodic media,” Appl. Phys. Lett. 98, 111107 (2011). [CrossRef]
  101. T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B 84, 115142 (2011). [CrossRef]
  102. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002).
  103. R. C. McPhedran, C. G. Poulton, N. P. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. A 452, 2231–2245 (1996). [CrossRef]
  104. T. Nakamura, M. Shimizu, H. Kimura, and R. Sato, “Effective permittivity of amorphous mixed materials,” Electron. Commun. Jpn. Part I Commun. 88, 1–9 (2005).
  105. D. Felbacq and G. Bouchitté, “Homogenization of a set of parallel fibres,” Waves Random Media 7, 245–256 (1997). [CrossRef]
  106. Z. Lu and D. W. Prather, “Calculation of effective permittivity, permeability, and surface impedance of negative-refraction photonic crystals,” Opt. Express 15, 8340–8345 (2007). [CrossRef]
  107. A. L. Efros and A. L. Pokrovsky, “Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability,” Solid State Commun. 129, 643–647 (2004). [CrossRef]
  108. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006). [CrossRef]
  109. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  110. B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957–2963 (2007). [CrossRef]
  111. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: the Engineering Approach (Wiley, 2006).
  112. N. Faché, F. Olyslager, and D. De Zutter, Electromagnetic and Circuit Modelling of Multiconductor Transmission Lines (Clarendon, 1993).
  113. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007). [CrossRef]
  114. C. R. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009). [CrossRef]
  115. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111 (2007). [CrossRef]
  116. C. Tserkezis and N. Stefanou, “Retrieving local effective constitutive parameters for anisotropic photonic crystals,” Phys. Rev. B 81, 115112 (2010). [CrossRef]
  117. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  118. M. Mazilu and K. Dholakia, “Optical impedance of metallic nano-structures,” Opt. Express 14, 7709–7722 (2006). [CrossRef]
  119. C. Tserkezis, “Effective parameters for periodic photonic structures of resonant elements,” J. Phys. Condens. Matter 21, 155404 (2009). [CrossRef]
  120. Grating and photonic crystal package, http://ee.sharif.edu/~khavasi/index_files/LPEM.zip .
  121. N. Habibi, A. Khavasi, M. Miri, and K. Mehrany, “Circuit model for mode extraction in lossy/lossless photonic crystal waveguides,” J. Opt. Soc. Am. B 29, 170–177 (2012). [CrossRef]
  122. M. Che and Z. Y. Li, “Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method,” J. Opt. Soc. Am. A 25, 2177–2184 (2008). [CrossRef]
  123. T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Opt. Express 13, 10768–10776 (2005). [CrossRef]
  124. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010). [CrossRef]
  125. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  126. K.-H. Kim and Q-Han Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
  127. M.-H. Lu, L. Feng, and Y.-F. Chen, “Phononic crystals and acoustic metamaterials,” Mater. Today 12, 34–42 (2009). [CrossRef]
  128. Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, and P. A. Deymier, “Two-dimensional phononic crystals: examples and applications,” Surf. Sci. Rep. 65, 229–291 (2010). [CrossRef]
  129. T. Miyashita, “Sonic crystals and sonic wave-guides,” Meas. Sci. Technol. 16, R47–R63 (2005). [CrossRef]
  130. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals.” Nature 462, 78–82 (2009). [CrossRef]
  131. P. Y. Chen, R. C. McPhedran, C. M. de Sterke, C. G. Poulton, A. A. Asatryan, L. C. Botten, and M. J. Steel, “Group velocity in lossy periodic structured media,” Phys. Rev. A 82, 053825 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited