OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 5, Iss. 4 — Dec. 31, 2013

Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits

Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant  »View Author Affiliations


Advances in Optics and Photonics, Vol. 5, Issue 4, pp. 536-587 (2013)
http://dx.doi.org/10.1364/AOP.5.000536


View Full Text Article

Enhanced HTML    Acrobat PDF (3196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review recent progress in inducing and harnessing stimulated Brillouin scattering (SBS) in integrated photonic circuits. Exciting SBS in a chip-scale device is challenging due to the stringent requirements on materials and device geometry. We discuss these requirements, which include material parameters, such as optical refractive index and acoustic velocity, and device properties, such as acousto-optic confinement. Recent work on SBS in nano-photonic waveguides and micro-resonators is presented, with special attention paid to photonic integration of applications such as narrow-linewidth lasers, slow- and fast-light, microwave signal processing, Brillouin dynamic gratings, and nonreciprocal devices.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 2, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 18, 2013
Published: December 19, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant, "Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits," Adv. Opt. Photon. 5, 536-587 (2013)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-5-4-536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).
  2. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976). [CrossRef]
  3. K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, 1615–1617 (2006). [CrossRef]
  4. K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37, 605–607 (2012). [CrossRef]
  5. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27, 5038–5044 (2009). [CrossRef]
  6. K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE 8426, 842611 (2012). [CrossRef]
  7. N. Primerov, Y. Antman, J. Sancho, A. Zadok, and L. Thevenaz, “Brillouin distributed sensing using localized and stationary dynamic gratings,” Proc. SPIE 8439, 843908 (2012). [CrossRef]
  8. M. Gonzalez-Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  10. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005). [CrossRef]
  11. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef]
  12. K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008). [CrossRef]
  13. E. Cabrera-Granado, O. G. Calderon, S. Melle, and D. J. Gauthier, “Observation of large 10  Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008). [CrossRef]
  14. C. Jauregui, P. Petropoulos, and D. J. Richardson, “Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects,” Opt. Express 15, 5126–5135 (2007). [CrossRef]
  15. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008).
  16. M. J. Lee, R. Pant, and M. A. Neifeld, “Improved slow-light delay performance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings,” Appl. Opt. 47, 6404–6415 (2008). [CrossRef]
  17. M. J. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow-light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975–2984 (2008). [CrossRef]
  18. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008). [CrossRef]
  19. R. Pant, M. D. Stenner, M. A. Neifeld, Z. M. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007). [CrossRef]
  20. T. Schneider, M. Junker, and K. U. Lauterbach, “Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems,” Opt. Lett. 32, 220–222 (2007). [CrossRef]
  21. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007). [CrossRef]
  22. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877–5884 (2006). [CrossRef]
  23. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herraez, and L. Thevenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865 (2006). [CrossRef]
  24. K. Y. Song and K. Hotate, “25  GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007). [CrossRef]
  25. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008). [CrossRef]
  26. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011). [CrossRef]
  27. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007). [CrossRef]
  28. Y. H. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697 (2011). [CrossRef]
  29. Z. M. Zhu and D. J. Gauthier, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005). [CrossRef]
  30. S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef]
  31. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010). [CrossRef]
  32. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thevenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20, 6157–6162 (2012). [CrossRef]
  33. B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” in 2009 International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 92–95.
  34. B. Vidal, M. A. Piqueras, and J. Marti, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007). [CrossRef]
  35. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express 19, 18423–18429 (2011). [CrossRef]
  36. W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1775–1777 (2011). [CrossRef]
  37. S. Chin, N. Primerov, K. Y. Song, L. Thevenaz, M. Santagiustina, and L. Ursini, “True time reversal via dynamic Brillouin gratings in polarization maintaining fibers,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (CD) (Optical Society of America, 2010), paper NThA6.
  38. S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12, 189–194 (2012). [CrossRef]
  39. S. N. Jouybari, H. Latifi, and F. Farahi, “Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating,” Meas. Sci. Technol. 23, 085203 (2012). [CrossRef]
  40. S. Li, M.-J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett. 37, 4660–4662 (2012). [CrossRef]
  41. K. Y. Song, “Operation of Brillouin dynamic grating in single-mode optical fibers,” Opt. Lett. 36, 4686–4688 (2011). [CrossRef]
  42. K. Y. Song, “Effects of induced birefringence on Brillouin dynamic gratings in single-mode optical fibers,” Opt. Lett. 37, 2229–2231 (2012). [CrossRef]
  43. K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-domain distributed fiber sensor with 1  cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010). [CrossRef]
  44. K. Y. Song and H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35, 52–54 (2010). [CrossRef]
  45. K. Y. Song, W. W. Zou, Z. Y. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33, 926–928 (2008). [CrossRef]
  46. L. Thevenaz, N. Primerov, C. Sanghoon, and M. Santagiustina, “Dynamic Brillouin gratings: a new tool in fibers for all-optical signal processing,” in 2011 IEEE Photonics Conference (PHO) (IEEE, 2011), pp. 63–64.
  47. D. P. Zhou, Y. K. Dong, L. Chen, and X. Y. Bao, “Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment,” Opt. Express 19, 20785–20798 (2011). [CrossRef]
  48. W. W. Zou, Z. Y. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19, 2363–2370 (2011). [CrossRef]
  49. M. J. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin Scattering: Fundamentals and Applications (Taylor & Francis, 2010).
  50. R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation,” Opt. Lett. 36, 3687–3689 (2011). [CrossRef]
  51. R. Pant, C. G. Poulton, D. Y. Choi, H. McFarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011). [CrossRef]
  52. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [CrossRef]
  53. P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18, 14439–14453 (2010). [CrossRef]
  54. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012). [CrossRef]
  55. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013). [CrossRef]
  56. R. Pant, A. Byrnes, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and dynamically reconfigurable microwave photonic filter using stimulated Brillouin scattering,” in Postdeadline Advanced Photonics Congress, Colorado Springs, OSA Technical Digest (online) (Optical Society of America, 2012), paper JW4D.5.
  57. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012). [CrossRef]
  58. F. Gao, R. Pant, E. Li, C. G. Poulton, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21, 8605–8613 (2013). [CrossRef]
  59. R. Pant, E. Li, C. G. Poulton, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett. 38, 305–307 (2013). [CrossRef]
  60. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013). [CrossRef]
  61. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012). [CrossRef]
  62. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013). [CrossRef]
  63. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012). [CrossRef]
  64. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  65. L. I. Mandelstam, Zh. Russ. Fiz.-Khim. 58, 381 (1926).
  66. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  67. T. H. Maiman, “Stimulated optical emission in ruby (Invited),” J. Opt. Soc. Am. 50, 1134, Abstract (1960), paper TC1.
  68. T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett. 4, 564–566 (1960). [CrossRef]
  69. R. Y. Chiao, B. P. Stoicheff, and C. H. Townes, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964). [CrossRef]
  70. R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13, 334–336 (1964). [CrossRef]
  71. R. Y. Chiao and B. P. Stoicheff, “Brillouin scattering in liquids excited by He-Ne maser,” J. Opt. Soc. Am. 54, 1286–1287 (1964). [CrossRef]
  72. E. Garmire and C. H. Townes, “Stimulated Brillouin scattering in liquids,” Appl. Phys. Lett. 5, 84–86 (1964). [CrossRef]
  73. E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965). [CrossRef]
  74. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin-scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972). [CrossRef]
  75. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006). [CrossRef]
  76. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009). [CrossRef]
  77. R. Vacher and L. Boyer, “Brillouin scattering: a tool for the measurement of elastic and photoelastic constants,” Phys. Rev. B 6, 639–673 (1972). [CrossRef]
  78. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989). [CrossRef]
  79. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  80. P. J. Thomas, H. M. van Driel, and G. I. A. Stegeman, “Possibility of using an optical fiber Brillouin ring laser for inertial sensing,” Appl. Opt. 19, 1906–1908 (1980). [CrossRef]
  81. F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Opt. Lett. 16, 229–231 (1991). [CrossRef]
  82. R. K. Kadiwar and I. P. Giles, “Optical fibre Brillouin ring laser gyroscope,” Electron. Lett. 25, 1729–1731 (1989). [CrossRef]
  83. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009). [CrossRef]
  84. J. H. Lee, K. Y. Song, H. J. Yoon, J. S. Kim, T. Hasegawa, T. Nagashima, S. Ohara, and N. Sugimoto, “Brillouin gain-coefficient measurement for bismuth-oxide-based photonic crystal fiber under significant beam reflection at splicing points,” Opt. Lett. 34, 2670–2672 (2009). [CrossRef]
  85. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thevenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007). [CrossRef]
  86. B. Stiller, S. M. Foaleng, J. C. Beugnot, M. W. Lee, M. Delque, G. Bouwmans, A. Kudlinski, L. Thevenaz, H. Maillotte, and T. Sylvestre, “Photonic crystal fiber mapping using Brillouin echoes distributed sensing,” Opt. Express 18, 20136–20142 (2010). [CrossRef]
  87. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011). [CrossRef]
  88. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009). [CrossRef]
  89. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005). [CrossRef]
  90. H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005). [CrossRef]
  91. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010). [CrossRef]
  92. P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990). [CrossRef]
  93. N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412–414 (2006). [CrossRef]
  94. J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007). [CrossRef]
  95. T. Sonehara, Y. Konno, H. Kaminaga, S. Saikan, and S. Ohno, “Frequency-modulated stimulated Brillouin spectroscopy in crystals,” J. Opt. Soc. Am. B 24, 1193–1198 (2007). [CrossRef]
  96. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005). [CrossRef]
  97. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  98. C. G. Poulton, R. Pant, and B. J. Eggleton, “Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides,” J. Opt. Soc. Am. B 30, 2657–2664 (2013). [CrossRef]
  99. S. Afshar V, M. A. Lohe, W. Q. Zhang, and T. M. Monro, “Full vectorial analysis of polarization effects in optical nanowires,” Opt. Express 20, 14514–14533 (2012). [CrossRef]
  100. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in a standard highly nonlinear fiber,” Opt. Express 19, 5339–5349 (2011). [CrossRef]
  101. R. W. Boyd, K. Rza¸ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef]
  102. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985). [CrossRef]
  103. X. Liang, Z. Li, L. Shouyu, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008). [CrossRef]
  104. M. Lee, Y. Zhu, D. J. Gauthier, M. E. Gehm, and M. A. Neifeld, “Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system,” Appl. Opt. 50, 6063–6072 (2011). [CrossRef]
  105. G. Wang, L. Zhan, J. Liu, T. Zhang, J. Li, L. Zhang, J. Peng, and L. Yi, “Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser,” Opt. Lett. 38, 19–21 (2013). [CrossRef]
  106. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28, 2993–3003 (2010). [CrossRef]
  107. M. W. Lee, B. Stiller, J. Hauden, H. Maillotte, C. Roch, L. Thevenaz, and T. Sylvestre, “Differential phase-shift-keying technique-based Brillouin echo-distributed sensing,” IEEE Photon. Technol. Lett. 24, 79–81 (2012). [CrossRef]
  108. T. Sperber, A. Eyal, M. Tur, and L. Thevenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18, 8671–8679 (2010). [CrossRef]
  109. L. Thevenaz, S. Foaleng-Mafang, K. Y. Song, S. H. Chin, J. C. Beugnot, N. Primerov, and M. Tur, “Recent progress towards centimetric spatial resolution in distributed fibre sensing,” Proc. SPIE 7653, 765309 (2010). [CrossRef]
  110. A. Fellay, L. Thevenaz, J. P. Garcia, M. Facchini, W. Scandale, and P. Robert, “Brillouin-based temperature sensing in optical fibres down to IK,” in 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 301–304.
  111. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. Robert, “Applications of distributed Brillouin fibre sensing,” Proc. SPIE 3407, 374–381 (1998). [CrossRef]
  112. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998). [CrossRef]
  113. D. Uttamchandani, B. Culshaw, M. S. Overington, M. Parsey, M. Facchini, and L. Thevenaz, “Distributed sensing of strain in synthetic fibre rope and cable constructions using optical fibre sensors,” Proc. SPIE 3860, 273–275 (1999). [CrossRef]
  114. Y. G. Lu, Z. G. Qin, P. Lu, D. P. Zhou, L. Chen, and X. Y. Bao, “Distributed strain and temperature measurement by Brillouin beat spectrum,” IEEE Photon. Technol. Lett. 25, 1050–1053 (2013). [CrossRef]
  115. D. P. Zhou, W. H. Li, L. Chen, and X. Y. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors 13, 1836–1845 (2013). [CrossRef]
  116. X. Y. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012). [CrossRef]
  117. Y. G. Lu, X. Y. Bao, L. Chen, S. R. Xie, and M. Pang, “Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry,” Opt. Lett. 37, 3936–3938 (2012). [CrossRef]
  118. Y. K. Dong, H. Y. Zhang, L. Chen, and X. Y. Bao, “2  cm spatial-resolution and 2  km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51, 1229–1235 (2012). [CrossRef]
  119. X. Liu and X. Y. Bao, “Brillouin spectrum in LEAF and simultaneous temperature and strain measurement,” J. Lightwave Technol. 30, 1053–1059 (2012). [CrossRef]
  120. Y. K. Dong, L. A. Chen, and X. Y. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 22, 1364–1366 (2010). [CrossRef]
  121. R. M. Evich, S. I. Perechinskii, Z. P. Gad’mashi, I. I. Shpak, Y. M. Vysochanskii, and V. Y. Slivka, “Mandelshtam-Brillouin scattering in As2S3 and GeS2 chalcogenide glasses,” Glass Phys. Chem. 30, 14–16 (2004). [CrossRef]
  122. Y. Mizuno, N. Hayashi, and K. Nakamura, “Brillouin scattering signal in polymer optical fiber enhanced by exploiting pulsed pump with multimode-fiber-assisted coupling technique,” Opt. Lett. 38, 1467–1469 (2013). [CrossRef]
  123. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump probe technique,” Opt. Lett. 36, 2378–2380 (2011). [CrossRef]
  124. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97, 021103 (2010). [CrossRef]
  125. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35, 3985–3987 (2010). [CrossRef]
  126. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef]
  127. S. Chin, M. Gonzalez-Herraez, and L. Thevenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006). [CrossRef]
  128. K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37, 1157–1159 (2012). [CrossRef]
  129. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991). [CrossRef]
  130. H. G. Winful, I. V. Kabakova, and B. J. Eggleton, “Model for distributed feedback Brillouin lasers,” Opt. Express 21, 16191–16199 (2013). [CrossRef]
  131. Y. K. Dong, H. Y. Zhang, Z. W. Lu, L. Chen, and X. Y. Bao, “Distributed birefringence measurement of a 500-m polarization-maintaining fiber with a 20-cm resolution based on Brillouin dynamic grating,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012).
  132. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010). [CrossRef]
  133. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011). [CrossRef]
  134. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006). [CrossRef]
  135. T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, E. Li, and B. J. Eggleton, “Multi-wavelength gratings formed via cascaded stimulated Brillouin scattering,” Opt. Express 20, 26434–26440 (2012). [CrossRef]
  136. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  137. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduction,” Opt. Express 18, 26632–26634 (2010). [CrossRef]
  138. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). [CrossRef]
  139. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroder, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012). [CrossRef]
  140. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  141. C. Husko and B. J. Eggleton, “Energy efficient nonlinear optics in silicon: are slow-light structures more efficient than nanowires?” Opt. Lett. 37, 2991–2993 (2012). [CrossRef]
  142. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O. Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010). [CrossRef]
  143. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, J. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146 (2007). [CrossRef]
  144. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and J. R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef]
  145. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295–1297 (2006). [CrossRef]
  146. T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]
  147. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]
  148. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012). [CrossRef]
  149. S. Levy, V. Lyubin, M. Klebanov, J. Scheuer, and A. Zadok, “Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides,” Opt. Lett. 37, 5112–5114 (2012). [CrossRef]
  150. S. Ramachandran and S. G. Bishop, “Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses,” IEEE J. Sel. Top. Quantum Electron. 11, 260–270 (2005). [CrossRef]
  151. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012). [CrossRef]
  152. S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, and B. Luther-Davies, “Low loss coupling to sub-micron thick rib and nanowire waveguides by vertical tapering,” Opt. Express 21, 3582–3594 (2013). [CrossRef]
  153. I. V. Kabakova, R. Pant, D.-Y. Choi, S. K. Debbarma, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38, 3208–3211 (2013). [CrossRef]
  154. L. Richter, H. I. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22, 2070–2074 (1986). [CrossRef]
  155. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003). [CrossRef]
  156. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  157. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006). [CrossRef]
  158. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. F. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006). [CrossRef]
  159. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  160. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010). [CrossRef]
  161. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  162. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  163. J. K. S. Poon, P. Chak, J. M. Choi, and A. Yariv, “Slowing light with Fabry-Perot resonator arrays,” J. Opt. Soc. Am. B 24, 2763–2769 (2007). [CrossRef]
  164. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009). [CrossRef]
  165. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics 5, 731–733 (2011). [CrossRef]
  166. S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011). [CrossRef]
  167. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007). [CrossRef]
  168. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013). [CrossRef]
  169. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Variable delay using stationary and localized Brillouin dynamic gratings,” Proc. SPIE 8273, 82730C (2012). [CrossRef]
  170. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006). [CrossRef]
  171. D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett. 11, 874–876 (1999). [CrossRef]
  172. Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun. 281, 5146–5150 (2008). [CrossRef]
  173. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009). [CrossRef]
  174. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012). [CrossRef]
  175. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19, 4566–4576 (2011). [CrossRef]
  176. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500–2509 (2006). [CrossRef]
  177. K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett. 20, 1917–1919 (2008). [CrossRef]
  178. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Single-bandpass microwave photonic filter with wide tuning range and no baseband response,” in 2011 IEEE Photonics Conference (IEEE, 2011), pp. 143–144.
  179. J. Mora, J. Capmany, and L. R. Chen, “Tunable and reconfigurable single bandpass photonic microwave filter using a high-birefringence Sagnac loop and DVMM channel selector,” in 2007 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2007), Vols. 1 and 2, pp. 192–193.
  180. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006). [CrossRef]
  181. W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006). [CrossRef]
  182. F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett. 21, 90–93 (1999). [CrossRef]
  183. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011). [CrossRef]
  184. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef]
  185. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightwave Technol. 29, 2267–2275 (2011). [CrossRef]
  186. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Opt. 3, 544–545 (1964). [CrossRef]
  187. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012). [CrossRef]
  188. S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005). [CrossRef]
  189. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012). [CrossRef]
  190. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express 20, 21235–21246 (2012). [CrossRef]
  191. H. G. Winful, “Chirped Brillouin dynamic gratings for storing and compressing light,” Opt. Express 21, 10039–10047 (2013). [CrossRef]
  192. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011). [CrossRef]
  193. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited