OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Govind Agrawal
  • Vol. 6, Iss. 1 — Mar. 31, 2014

Subwavelength semiconductor lasers for dense chip-scale integration

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman  »View Author Affiliations

Advances in Optics and Photonics, Vol. 6, Issue 1, pp. 1-56 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal-clad subwavelength lasers have recently become excellent candidates for light sources in densely packed chip-scale photonic circuits. In this review, we summarize recent research efforts in the theory, design, fabrication, and characterization of such lasers. We detail advancements of both the metallo-dielectric and the coaxial type lasers: for the metallo-dielectric type, we discuss operation with both optical pumping and electrical pumping. For the coaxial type, we discuss operation with all spontaneous emission coupled into the lasing mode, as well as the smallest metal-clad lasers to date operating at room temperature. A formal treatment of the Purcell effect, the modification of the spontaneous emission rate by a subwavelength cavity, is then presented to assist in better understanding the quantum effects in these nanoscale semiconductor lasers. This formalism is developed for the transparent medium condition, using the emitter-field-reservoir model in the quantum theory of damping. We show its utility through the analysis and design of subwavelength lasers. Finally, we discuss future research directions toward high-efficiency nanolasers and potential applications, such as creating planar arrays of uncoupled lasers with emitter densities near the resolution limit.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 16, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: January 27, 2014
Published: March 20, 2014

Virtual Issues
(2014) Advances in Optics and Photonics

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman, "Subwavelength semiconductor lasers for dense chip-scale integration," Adv. Opt. Photon. 6, 1-56 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  2. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  3. H. Yokoyama and S. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989). [CrossRef]
  4. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. Brorson, and E. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990). [CrossRef]
  5. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991). [CrossRef]
  6. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999). [CrossRef]
  7. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009). [CrossRef]
  8. C. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nanoLEDs,” Opt. Express 20, 16450–16470 (2012). [CrossRef]
  9. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18, 11230–11241 (2010). [CrossRef]
  10. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011). [CrossRef]
  11. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett. 110, 206403 (2013). [CrossRef]
  12. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006). [CrossRef]
  13. M. Khajavikhan, A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012). [CrossRef]
  14. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994). [CrossRef]
  15. C. Ning, “What is Laser Threshold?” IEEE J. Sel. Top. Quantum Electron. 19, 1503604 (2013). [CrossRef]
  16. S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  17. D. J. Gargas, M. C. Moore, A. Ni, S. Chang, Z. Zhang, S. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010). [CrossRef]
  18. J. Hofrichter, O. Raz, L. Liu, G. Morthier, F. Horst, P. Regreny, T. de Vries, H. J. Dorren, and B. J. Offrein, “All-optical wavelength conversion using mode switching in InP microdisc laser,” Electron. Lett. 47, 927–929 (2011). [CrossRef]
  19. Q. Song, H. Cao, S. Ho, and G. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94, 061109 (2009). [CrossRef]
  20. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef]
  21. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  22. A. C. Scofield, S. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11, 5387–5390 (2011). [CrossRef]
  23. C. Chen, C. Chiu, S. Chang, M. Shih, M. Kuo, J. Huang, H. Kuo, S. Chen, L. Lee, and M. Jeng, “Large-area ultraviolet GaN-based photonic quasicrystal laser with high-efficiency green color emission of semipolar {10-11} In 0.3  Ga 0.7  N/GaN multiple quantum wells,” Appl. Phys. Lett. 102, 011134 (2013). [CrossRef]
  24. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  25. Y. Lu, J. Kim, H. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Wang, M. Lu, B. Li, and X. Qiu, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012). [CrossRef]
  26. C. Lin, J. Wang, C. Chen, K. Shen, D. Yeh, Y. Kiang, and C. Yang, “A GaN photonic crystal membrane laser,” Nanotechnology 22, 025201 (2011). [CrossRef]
  27. S. Arai, N. Nishiyama, T. Maruyama, and T. Okumura, “GaInAsP/InP membrane lasers for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 1381–1389 (2011). [CrossRef]
  28. W. Zhou and Z. Ma, “Breakthroughs in nanomembranes and nanomembrane lasers,” IEEE Photonics J. 5, 700707 (2013). [CrossRef]
  29. Z. Wang, B. Tian, and D. van Thourhout, “Design of a novel micro-laser formed by monolithic integration of a III-V pillar with a silicon photonic crystal cavity,” J. Lightwave Technol. 31, 1475–1481 (2013). [CrossRef]
  30. J. Lin, Y. Huang, Q. Yao, X. Lv, Y. Yang, J. Xiao, and Y. Du, “InAlGaAs/InP cylinder microlaser connected with two waveguides,” Electron. Lett. 47, 929–930 (2011). [CrossRef]
  31. F. Albert, C. Hopfmann, A. Eberspacher, F. Arnold, M. Emmerling, C. Schneider, S. Hofling, A. Forchel, M. Kamp, and J. Wiersig, “Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers,” Appl. Phys. Lett. 101, 021116 (2012). [CrossRef]
  32. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, and T. J. Eijkemans, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  33. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  34. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19, 21524–21531 (2011). [CrossRef]
  35. K. Ding, M. Hill, Z. Liu, L. Yin, P. van Veldhoven, and C. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21, 4728–4733 (2013). [CrossRef]
  36. Q. Gu, J. Shane, F. Vallini, B. Wingad, J. S. Smalley, N. C. Frateschi, and Y. Fainman, “Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers,” IEEE J. Quantum Electron. (submitted).
  37. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  38. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, and V. D. Kulakovskii, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013). [CrossRef]
  39. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298, 199–202 (2002). [CrossRef]
  40. A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov, A. V. Kavokin, K. L. Campman, and A. C. Gossard, “Spontaneous coherence in a cold exciton gas,” Nature 483, 584–588 (2012). [CrossRef]
  41. Q. Gu, B. Slutsky, F. Vallini, J. S. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21, 15603–15617 (2013). [CrossRef]
  42. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006). [CrossRef]
  43. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef]
  44. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  45. E. Goebel, G. Luz, and E. Schlosser, “Optical gain spectra of InGaAsP/InP double heterostructures,” IEEE J. Quantum Electron. 15, 697–700 (1979). [CrossRef]
  46. M. Korbl, A. Groning, H. Schweizer, and J. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92, 2942–2944 (2002). [CrossRef]
  47. M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, and Y. Oei, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  48. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  49. E. Smotrova and A. Nosich, “Mathematical analysis of the lasing eigenvalue problem for the WG modes in a 2-D circular microcavity,” Opt. Quantum Electron. 36, 213–221 (2004). [CrossRef]
  50. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  51. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, 607–633 (2011).
  52. H. Walther, “Experiments on cavity quantum electrodynamics,” Phys. Rep. 219, 263–281 (1992). [CrossRef]
  53. P. R. Berman, “Cavity quantum electrodynamics,” (1994).
  54. C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013). [CrossRef]
  55. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989). [CrossRef]
  56. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  57. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, 1999).
  58. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010). [CrossRef]
  59. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004). [CrossRef]
  60. H. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28, 2390–2392 (2003). [CrossRef]
  61. H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18, 16546–16560 (2010). [CrossRef]
  62. M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25, 2019–2026 (1989). [CrossRef]
  63. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994).
  64. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999). [CrossRef]
  65. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006). [CrossRef]
  66. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  67. M. Glauser, G. Rossbach, G. Cosendey, J. Levrat, M. Cobet, J. Carlin, J. Besbas, M. Gallart, P. Gilliot, and R. Butté, “Investigation of InGaN/GaN quantum wells for polariton laser diodes,” Phys. Stat. Solidi C 9, 1325–1329 (2012). [CrossRef]
  68. M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52, 2653–2664 (1981). [CrossRef]
  69. M. Yamanishi and Y. Lee, “Phase dampings of optical dipole moments and gain spectra in semiconductor lasers,” IEEE J. Quantum Electron. 23, 367–370 (1987). [CrossRef]
  70. S. R. Chinn, P. Zory, and A. R. Reisinger, “A model for GRIN-SCH-SQW diode lasers,” IEEE J. Quantum Electron. 24, 2191–2214 (1988). [CrossRef]
  71. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  72. B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, and D. Katzer, “Enhanced radiative recombination of free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67, 2355–2358 (1991). [CrossRef]
  73. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003). [CrossRef]
  74. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer, 1999).
  75. J. S. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
  76. J. Masum, D. Ramoo, N. Balkan, and M. Adams, “Temperature dependence of the spontaneous emission factor in VCSELs,” IEE Proc. Optoelectron. 146, 245–251 (1999). [CrossRef]
  77. D. M. Ramoo and M. J. Adams, “Temperature dependence of the spontaneous emission factor in microcavities,” in Symposium on Integrated Optoelectronic Devices (International Society for Optics and Photonics, 2002).
  78. Z. Liu, J. M. Shainline, G. E. Fernandes, J. Xu, J. Chen, and C. F. Gmachl, “Continuous-wave subwavelength microdisk lasers at λ = 1.53  μm,” Opt. Express 18, 19242–19248 (2010). [CrossRef]
  79. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  80. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992). [CrossRef]
  81. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  82. R. Benzaquen, S. Charbonneau, N. Sawadsky, A. Roth, R. Leonelli, L. Hobbs, and G. Knight, “Alloy broadening in photoluminescence spectra of GaxIn1−xAsyP1−y lattice matched to InP,” J. Appl. Phys. 75, 2633–2639 (1994). [CrossRef]
  83. M. Bayer, T. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001). [CrossRef]
  84. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997). [CrossRef]
  85. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  86. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]
  87. G. Bjork, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992). [CrossRef]
  88. P. R. Rice and H. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser–phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994). [CrossRef]
  89. L. M. Pedrotti, M. Sokol, and P. R. Rice, “Linewidth of four-level microcavity lasers,” Phys. Rev. A 59, 2295–2301 (1999). [CrossRef]
  90. M. Rosenzweig, M. Mohrle, H. Duser, and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron. 27, 1804–1811 (1991). [CrossRef]
  91. S. Sweeney, A. Phillips, A. Adams, E. O’Reilly, and P. Thijs, “The effect of temperature dependent processes on the performance of 1.5-μm compressively strained InGaAs (P) MQW semiconductor diode lasers,” IEEE Photonics Technol. Lett. 10, 1076–1078 (1998). [CrossRef]
  92. S. Strauf, K. Hennessy, M. Rakher, Y. S. Choi, A. Badolato, L. Andreani, E. Hu, P. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef]
  93. A. A. Saleh and J. A. Dionne, “Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85, 045407 (2012). [CrossRef]
  94. M. Asada and Y. Suematsu, “Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers,” IEEE J. Quantum Electron. 21, 434–442 (1985). [CrossRef]
  95. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. Fedeli, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007). [CrossRef]
  96. H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8819–8828 (2005). [CrossRef]
  97. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012). [CrossRef]
  98. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007). [CrossRef]
  99. S. M. Morris, P. J. Hands, S. Findeisen-Tandel, R. H. Cole, T. D. Wilkinson, and H. J. Coles, “Polychromatic liquid crystal laser arrays towards display applications,” Opt. Express 16, 18827–18837 (2008). [CrossRef]
  100. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013). [CrossRef]
  101. H. Abe, M. Narimatsu, S. Kita, A. Tomitaka, Y. Takemura, and T. Baba, “Live cell imaging using photonic crystal nanolaser array,” Micro-TAS 593, 2011 (2011).
  102. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013). [CrossRef]
  103. Oclaro, “Data sheet: 850  nm 20  Gb/s multimode VCSEL chip array,” http://www.oclaro.com/datasheets/D00473-PB%20APA7601xy0000%20Datasheet%20Iss01.pdf .
  104. O. Bondarenko, A. Simic, Q. Gu, J. Lee, B. Slutsky, M. Nezhad, and Y. Fainman, “Wafer bonded subwavelength metallo-dielectric laser,” IEEE Photonics J. 3, 608–616 (2011). [CrossRef]
  105. O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, and Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103, 043105 (2013). [CrossRef]
  106. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6, 568–572 (2011). [CrossRef]
  107. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).
  108. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991). [CrossRef]
  109. S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009). [CrossRef]
  110. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009). [CrossRef]
  111. R. J. Glauber, “Optical coherence and photon statistics,” in Quantum Optics and Electronics (Les Houches, 1965).
  112. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991). [CrossRef]
  113. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007). [CrossRef]
  114. G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006). [CrossRef]
  115. V. Weisskopf and E. Wigner, “Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory,” Z. Phys. 63, 54–73 (1930). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited