OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Govind Agrawal
  • Vol. 6, Iss. 1 — Mar. 31, 2014

Diffraction phase microscopy: principles and applications in materials and life sciences

Basanta Bhaduri, Chris Edwards, Hoa Pham, Renjie Zhou, Tan H. Nguyen, Lynford L. Goddard, and Gabriel Popescu  »View Author Affiliations


Advances in Optics and Photonics, Vol. 6, Issue 1, pp. 57-119 (2014)
http://dx.doi.org/10.1364/AOP.6.000057


View Full Text Article

Enhanced HTML    Acrobat PDF (4677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The main obstacle in retrieving quantitative phase with high sensitivity is posed by the phase noise due to mechanical vibrations and air fluctuations that typically affect any interferometric system. In this paper, we review diffraction phase microscopy (DPM), which is a common-path quantitative phase imaging (QPI) method that significantly alleviates the noise problem. DPM utilizes a compact Mach–Zehnder interferometer to combine several attributes of current QPI methods. This compact configuration inherently cancels out most mechanisms responsible for noise and is single-shot, meaning that the acquisition speed is limited only by the speed of the camera employed. This technique is also nondestructive and does not require staining or coating of the specimen. This unique collection of features enables the DPM system to accurately monitor the dynamics of various nanoscale phenomena in a wide variety of environments. The DPM system can operate in both transmission and reflection modes in order to accommodate both transparent and opaque samples, respectively. Thus, current applications of DPM include measuring the dynamics of biological samples, semiconductor wet etching and photochemical etching processes, surface wetting and evaporation of water droplets, self-assembly of nanotubes, expansion and deformation of materials, and semiconductor wafer defect detection. Finally, DPM with white light averages out much of the speckle background and also offers potential for spectroscopic measurements.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(110.0180) Imaging systems : Microscopy
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: July 9, 2013
Revised Manuscript: January 5, 2014
Manuscript Accepted: January 27, 2014
Published: March 26, 2014

Virtual Issues
(2014) Advances in Optics and Photonics

Citation
Basanta Bhaduri, Chris Edwards, Hoa Pham, Renjie Zhou, Tan H. Nguyen, Lynford L. Goddard, and Gabriel Popescu, "Diffraction phase microscopy: principles and applications in materials and life sciences," Adv. Opt. Photon. 6, 57-119 (2014)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-6-1-57


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects, Part 1,” Physica 9, 686–698 (1942). [CrossRef]
  2. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects, Part 2,” Physica 9, 974–986 (1942). [CrossRef]
  3. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  4. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–457 (1946).
  5. A. Lohmann, “Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop,” Opt. Acta 3, 97–99 (1956). [CrossRef]
  6. E. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962). [CrossRef]
  7. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  8. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  9. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  10. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  11. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  12. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004). [CrossRef]
  13. D. C. B. Kemper, J. Schnekenburger, M. Schäfer, W. Domschke, G. von Bally, I. Bredebusch, and D. Carl, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). [CrossRef]
  14. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008). [CrossRef]
  15. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2, 331–344 (2011). [CrossRef]
  16. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef]
  17. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  18. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  19. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047–3052 (2007). [CrossRef]
  20. N. T. Shaked, Y. Z. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef]
  21. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16, 030506 (2011). [CrossRef]
  22. L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444–2452 (2005). [CrossRef]
  23. W. J. Qu, Y. J. Yu, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1278 (2009). [CrossRef]
  24. P. W. M. Tsang, K. W. K. Cheung, T. Kim, Y. S. Kim, and T. C. Poon, “Fast reconstruction of sectional images in digital holography,” Opt. Lett. 36, 2650–2652 (2011). [CrossRef]
  25. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007). [CrossRef]
  26. L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17, 12031–12038 (2009). [CrossRef]
  27. A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6, 500–505 (2010). [CrossRef]
  28. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012). [CrossRef]
  29. K. J. Gåsvik, Optical Metrology (Wiley, 2002).
  30. H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature 169, 541 (1952). [CrossRef]
  31. R. Barer, “Interference microscopy and mass determination,” Nature 169, 366–367 (1952). [CrossRef]
  32. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  33. C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004). [CrossRef]
  34. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  35. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  36. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). [CrossRef]
  37. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef]
  38. C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000). [CrossRef]
  39. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied. to the study of cell membrane dynamics,” Opt. Lett. 26, 1271–1273 (2001). [CrossRef]
  40. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004). [CrossRef]
  41. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1168 (2005). [CrossRef]
  42. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006). [CrossRef]
  43. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35, 447–449 (2010). [CrossRef]
  44. B. Bhaduri, K. Tangella, and G. Popescu, “Fourier phase microscopy with white light,” Biomed. Opt. Express 4, 1434–1441 (2013). [CrossRef]
  45. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013). [CrossRef]
  46. T. Kim, R. Zhou, M. Mir, D. S. Babacan, S. P. Carney, L. L. Goddard, and G. Popescu, “White light diffraction tomography of unlabeled live cells,” Nat. Photonics 8, 256–263 (2014). [CrossRef]
  47. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–468 (1873).
  48. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
  49. H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52, A97–A101 (2013). [CrossRef]
  50. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012). [CrossRef]
  51. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2, 1781–1793 (2011). [CrossRef]
  52. B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37, 1868–1870 (2012). [CrossRef]
  53. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006). [CrossRef]
  54. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012). [CrossRef]
  55. N. Mohandas and P. G. Gallagher, “Red cell membrane: past, present, and future,” Blood 112, 3939–3948 (2008). [CrossRef]
  56. R. Cotran, V. Kumar, T. Collins, and S. Robbins, Robbins Pathologic Basis of Disease (Saunders, 2004).
  57. H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of erythrocyte membranes in high-frequency electric fields,” Nature 307, 378–380 (1984). [CrossRef]
  58. M. P. Sheetz, M. Schindler, and D. E. Koppel, “Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes,” Nature 285, 510–512 (1980). [CrossRef]
  59. D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266, 1032–1035 (1994). [CrossRef]
  60. C. P. Johnson, H. Y. Tang, C. Carag, D. W. Speicher, and D. E. Discher, “Forced unfolding of proteins within cells,” Science 317, 663–666 (2007). [CrossRef]
  61. C. F. Schmidt, K. Svoboda, N. Lei, I. B. Petsche, L. E. Berman, C. R. Safinya, and G. S. Grest, “Existence of a flat phase in red cell membrane skeletons,” Science 259, 952–955 (1993). [CrossRef]
  62. J. D. Wan, W. D. Ristenpart, and H. A. Stone, “Dynamics of shear-induced ATP release from red blood cells,” Proc. Natl. Acad. Sci. USA 105, 16432–16437 (2008). [CrossRef]
  63. Y. Cui and C. Bustamante, “Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure,” Proc. Natl. Acad. Sci. USA 97, 127–132 (2000). [CrossRef]
  64. T. R. Hinds and F. F. Vincenzi, “Evidence for a calmodulin-activated Ca2+ pump ATPase in dog erythrocytes,” Proc. Soc. Exp. Biol. Med. 181, 542–549 (1986). [CrossRef]
  65. M. Schindler, D. E. Koppel, and M. P. Sheetz, “Modulation of membrane protein lateral mobility by polyphosphates and polyamines,” Proc. Natl. Acad. Sci. USA 77, 1457–1461 (1980). [CrossRef]
  66. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003). [CrossRef]
  67. B. Bain, A Beginner’s Guide to Blood Cells (Blackwell, 2004).
  68. J. B. Fournier, D. Lacoste, and E. Rapha, “Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size,” Phys. Rev. Lett. 92, 18102 (2004). [CrossRef]
  69. M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293, C597–C605 (2007). [CrossRef]
  70. E. Browicz, “Further observation of motion phenomena on red blood cells in pathological states,” Zentralbl. Med. Wiss. 28, 625–627 (1890).
  71. N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90, 228101 (2003). [CrossRef]
  72. A. Zilker, M. Ziegler, and E. Sackmann, “Spectral-analysis of erythrocyte flickering in the 0.3–4-μm-1 regime by microinterferometry combined with fast image-processing,” Phys. Rev. A 46, 7998–8001 (1992). [CrossRef]
  73. S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, “Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes,” J. Cell Biol. 141, 1551–1561 (1998).
  74. N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88, 1859–1874 (2005). [CrossRef]
  75. C. L. L. Lawrence, N. Gov, and F. L. H. Brown, “Nonequilibrium membrane fluctuations driven by active proteins,” J. Chem. Phys. 124, 074903 (2006). [CrossRef]
  76. J. Li, M. Dao, C. T. Lim, and S. Suresh, “Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte,” Biophys. J. 88, 3707–3719 (2005). [CrossRef]
  77. F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36, 1035–1047 (1975). [CrossRef]
  78. Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96, 118101 (2006). [CrossRef]
  79. A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast (RIC-) microscopy—a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. (France) 48, 2139–2151 (1987). [CrossRef]
  80. Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. USA 107, 6731–6736 (2010). [CrossRef]
  81. C. A. Best, J. E. Cluette-Brown, M. Teruya, A. Teruya, and M. Laposata, “Red blood cell fatty acid ethyl esters: a significant component of fatty acid ethyl esters in the blood,” J. Lipid Res. 44, 612–620 (2003). [CrossRef]
  82. H. W. G. Lim, M. Wortis, and R. Mukhopadhyay, “Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics,” Proc. Natl. Acad. Sci. USA 99, 16766–16769 (2002). [CrossRef]
  83. T. Kuriabova and A. J. Levine, “Nanorheology of viscoelastic shells: applications to viral capsids,” Phys. Rev. E 77, 031921 (2008). [CrossRef]
  84. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 1995).
  85. Wikipedia, “Malaria,” http://en.wikipedia.org/wiki/Main_Page .
  86. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15–30 (2005). [CrossRef]
  87. A. Kilejian, “Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 76, 4650–4653 (1979). [CrossRef]
  88. I. W. Sherman, “Biochemistry of plasmodium (malarial parasites),” Microbiol. Rev. 43, 453–495 (1979).
  89. D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931–2935 (1990). [CrossRef]
  90. G. B. Nash, E. O’Brien, E. C. Gordon-Smith, and J. A. Dormandy, “Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum,” Blood 74, 855–861 (1989).
  91. H. A. Cranston, C. W. Boylan, G. L. Carroll, S. P. Sutera, I. Y. Gluzman, and D. J. Krogstad, “Plasmodium falciparum maturation abolishes physiologic red cell deformability,” Science 223, 400–403 (1984). [CrossRef]
  92. M. Paulitschke and G. B. Nash, “Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum,” J. Lab. Clin. Med. 122, 581–589 (1993).
  93. L. H. Miller, D. I. Baruch, K. Marsh, and O. K. Doumbo, “The pathogenic basis of malaria,” Nature 415, 673–679 (2002). [CrossRef]
  94. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730 (2008). [CrossRef]
  95. K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processes—part II,” J. Microelectromech. Syst. 12, 761–778 (2003). [CrossRef]
  96. C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21, 13547–13554 (2013). [CrossRef]
  97. E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci. 256, 2539–2545 (2010). [CrossRef]
  98. S. J. Lim, W. Kim, and S. K. Shin, “Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets,” J. Am. Chem. Soc. 134, 7576–7579 (2012). [CrossRef]
  99. C. J. Hwang, “Optical properties of N-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys. 40, 3731–3739 (1969). [CrossRef]
  100. M. D. Seaberg, D. E. Adams, B. Zhang, D. F. Gardner, M. M. Murnane, and H. C. Kapteyn, “Ultrahigh 22 nm resolution EUV coherent diffraction imaging using a tabletop 13 nm high harmonic source,” Proc. SPIE 8324, 83240D (2012). [CrossRef]
  101. B. M. Barnes, Y.-J. Sohn, F. Goasmat, H. Zhou, R. M. Silver, and A. Arceo, “Scatterfield microscopy of 22-nm node patterned defects using visible and DUV light,” Proc. SPIE 8324, 83240F (2012). [CrossRef]
  102. R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013). [CrossRef]
  103. R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” Proc. SPIE 8681, 86810G (2013). [CrossRef]
  104. C. Edwards, B. Bhaduri, T. Nguyen, B. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22, 5133–5146 (2014).
  105. T. Nguyen, C. Edwards, L. L. Goddard, and G. Popescu are preparing a manuscript to be called “Quantitative phase imaging with partially coherent illumination.”
  106. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011). [CrossRef]
  107. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  108. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47, 545–556 (1957). [CrossRef]
  109. Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. USA 107, 1289–1294 (2010). [CrossRef]
  110. G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E 76, 031902 (2007). [CrossRef]
  111. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008). [CrossRef]
  112. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008). [CrossRef]
  113. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  114. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34, 3668–3670 (2009). [CrossRef]
  115. D. Fu, W. Choi, Y. J. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010). [CrossRef]
  116. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012). [CrossRef]
  117. H. Pham, B. Bhaduri, H. F. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37, 3438–3440 (2012). [CrossRef]
  118. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration,” Appl. Opt. 45, 2838–2842 (2006). [CrossRef]
  119. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  120. D. Kirk and W.-M. Hwu, Programming Massively Parallel Processors Hands-On with CUDA (Morgan Kaufmann, 2010).
  121. P. A. Karasev, D. P. Campbell, and M. A. Richards, “Obtaining a 35× speedup in 2D phase unwrapping using commodity graphics processors,” in IEEE Radar Conference (IEEE, 2007), pp. 574–578.
  122. P. Mistry, S. Braganza, D. Kaeli, and M. Leeser, “Accelerating phase unwrapping and affine transformations for optical quadrature microscopy using CUDA,” presented at the 2nd Workshop on General Purpose Processing on Graphics Processing Units, Washington, D.C., 2009.
  123. NVIDIA, “NVIDIA CUFFT Library,” http://docs.nvidia.com/cuda/cufft/
  124. K. Kaushansky and W. J. Williams, Williams Hematology (McGraw-Hill, 2011).
  125. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  126. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010). [CrossRef]
  127. R. S. Weinstein, A. R. Graham, F. Lian, B. L. Braunhut, G. R. Barker, E. A. Krupinski, and A. K. Bhattacharyya, “Reconciliation of diverse telepathology system designs. Historic issues and implications for emerging markets and new applications,” APMIS 120, 256–275 (2012). [CrossRef]
  128. H. V. Pham, B. Bhaduri, K. Tangella, C. Best-Popescu, and G. Popescu, “Real time blood testing using quantitative phase imaging,” PLOS One 8, e55676 (2013). [CrossRef]
  129. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, 1994).
  130. P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res. 22, 405–422 (1968). [CrossRef]
  131. J. Hoshen and R. Kopelman, “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm,” Phys. Rev. B 14, 3438–3445 (1976). [CrossRef]
  132. W. K. Pratt, Digital Image Processing: PIKS Scientific Inside (Wiley-Interscience, 2007).
  133. K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on sequential local operations,” Comput. Vis. Image Underst. 89, 1–23 (2003). [CrossRef]
  134. K. A. Hawick, A. Leist, and D. P. Playne, “Parallel graph component labelling with GPUs and CUDA,” Parallel Comput. 36, 655–678 (2010). [CrossRef]
  135. O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected component labeling on a 2D grid using CUDA,” J. Parallel Distrib. Comput. 71, 615–620 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited