OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Govind Agrawal
  • Vol. 6, Iss. 2 — Jun. 30, 2014

Advances in optical security systems

Wen Chen, Bahram Javidi, and Xudong Chen  »View Author Affiliations

Advances in Optics and Photonics, Vol. 6, Issue 2, pp. 120-155 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Information security with optical means, such as double random phase encoding, has been investigated by various researchers. It has been demonstrated that optical technology possesses several unique characteristics for securing information compared with its electronic counterpart, such as many degrees of freedom. In this paper, we present a review of optical technologies for information security. Optical security systems are reviewed, and theoretical principles and implementation examples are presented to illustrate each optical security system. In addition, advantages and potential weaknesses of each optical security system are analyzed and discussed. It is expected that this review not only will provide a clear picture about current developments in optical security systems but also may shed some light on future developments.

© 2014 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(110.1650) Imaging systems : Coherence imaging
(110.1758) Imaging systems : Computational imaging
(060.4785) Fiber optics and optical communications : Optical security and encryption
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Imaging Systems

Original Manuscript: January 2, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 24, 2014
Published: April 17, 2014

Virtual Issues
(2014) Advances in Optics and Photonics

Wen Chen, Bahram Javidi, and Xudong Chen, "Advances in optical security systems," Adv. Opt. Photon. 6, 120-155 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding—a survey,” Proc. IEEE 87, 1062–1078 (1999). [CrossRef]
  2. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997). [CrossRef]
  3. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  4. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996). [CrossRef]
  5. O. Matoba and B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999). [CrossRef]
  6. O. Matoba and B. Javidi, “Encrypted optical memory systems based on multidimensional keys for secure data storage and communications,” IEEE Circuits Devices Mag. 16(5), 8–15 (2000). [CrossRef]
  7. O. Matoba and B. Javidi, “Secure holographic memory by double-random polarization encryption,” Appl. Opt. 43, 2915–2919 (2004). [CrossRef]
  8. B. Javidi and T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000). [CrossRef]
  9. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006). [CrossRef]
  10. X. Tan, O. Matoba, T. Shimura, K. Kuroda, and B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000). [CrossRef]
  11. B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  12. W. Chen and X. Chen, “Space-based optical image encryption,” Opt. Express 18, 27095–27104 (2010). [CrossRef]
  13. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35, 3817–3819 (2010). [CrossRef]
  14. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating,” Appl. Opt. 50, 5750–5757 (2011). [CrossRef]
  15. W. Chen and X. Chen, “Optical asymmetric cryptography using a three-dimensional space-based model,” J. Opt. 13, 075404 (2011). [CrossRef]
  16. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005). [CrossRef]
  17. G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A Pure Appl. Opt. 8, 391–397 (2006). [CrossRef]
  18. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  19. Z. Liu, L. Xu, C. Lin, and S. Liu, “Image encryption by encoding with a nonuniform optical beam in gyrator transform domains,” Appl. Opt. 49, 5632–5637 (2010). [CrossRef]
  20. W. Liu, Z. Liu, and S. Liu, “Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm,” Opt. Lett. 38, 1651–1653 (2013). [CrossRef]
  21. X. Wang, D. Zhao, F. Jing, and X. Wei, “Information synthesis (complex amplitude addition and subtraction) and encryption with digital holography and virtual optics,” Opt. Express 14, 1476–1486 (2006). [CrossRef]
  22. L. Chen and D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14, 8552–8560 (2006). [CrossRef]
  23. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef]
  24. Y. Rivenson, A. Stern, and B. Javidi, “Single exposure super-resolution compressive imaging by double phase encoding,” Opt. Express 18, 15094–15103 (2010). [CrossRef]
  25. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998). [CrossRef]
  26. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999). [CrossRef]
  27. T. J. Naughton, B. M. Hennelly, and T. Dowling, “Introducing secure modes of operation for optical encryption,” J. Opt. Soc. Am. A 25, 2608–2617 (2008). [CrossRef]
  28. D. S. Monaghan, G. Situ, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Role of phase key in the double random phase encoding technique: an error analysis,” Appl. Opt. 47, 3808–3816 (2008). [CrossRef]
  29. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  30. N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284, 735–739 (2011). [CrossRef]
  31. E. Tajahuerce, J. Lancis, B. Javidi, and P. Andrés, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26, 678–680 (2001). [CrossRef]
  32. M. He, Q. Tan, L. Cao, Q. He, and G. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17, 22462–22473 (2009). [CrossRef]
  33. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  34. S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167–169 (2003). [CrossRef]
  35. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28–30 (2000). [CrossRef]
  36. B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997). [CrossRef]
  37. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006). [CrossRef]
  38. W. Stallings, Cryptography and Network Security: Principles and Practice, 4th ed. (Prentice Hall, 2006).
  39. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  40. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009). [CrossRef]
  41. O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  42. S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014). [CrossRef]
  43. W. Chen and X. Chen, “Optical image encryption using multilevel Arnold transform and noninterferometric imaging,” Opt. Eng. 50, 117001 (2011). [CrossRef]
  44. W. Chen, C. Quan, and C. J. Tay, “Optical color image encryption based on Arnold transform and interference method,” Opt. Commun. 282, 3680–3685 (2009). [CrossRef]
  45. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28, 269–271 (2003). [CrossRef]
  46. L. Chen and D. Zhao, “Optical image encryption with Hartley transforms,” Opt. Lett. 31, 3438–3440 (2006). [CrossRef]
  47. P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34, 331–333 (2009). [CrossRef]
  48. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18, 12033–12043 (2010). [CrossRef]
  49. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007). [CrossRef]
  50. W. Chen and X. Chen, “Quantitative phase retrieval of a complex-valued object using variable function orders in the fractional Fourier domain,” Opt. Express 18, 13536–13541 (2010). [CrossRef]
  51. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  52. W. Chen and X. Chen, “Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging,” Opt. Express 19, 9008–9019 (2011). [CrossRef]
  53. N. K. Nishchal, J. Joseph, and K. Singh, “Fully phase encryption using fractional Fourier transform,” Opt. Eng. 42, 1583–1588 (2003). [CrossRef]
  54. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001). [CrossRef]
  55. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011). [CrossRef]
  56. E. Pérez-Cabré, H. C. Abril, M. S. Millan, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14, 094001 (2012). [CrossRef]
  57. M. Cho and B. Javidi, “Three-dimensional photon counting double-random-phase encryption,” Opt. Lett. 38, 3198–3201 (2013). [CrossRef]
  58. J. W. Goodman, Statistical Optics (Wiley, 2000).
  59. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef]
  60. W. Chen, X. Chen, A. Anand, and B. Javidi, “Optical encryption using multiple intensity samplings in the axial domain,” J. Opt. Soc. Am. A 30, 806–812 (2013). [CrossRef]
  61. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on coherent diffractive imaging using multiple wavelengths,” Opt. Commun. 285, 225–228 (2012). [CrossRef]
  62. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38, 1425–1427 (2013). [CrossRef]
  63. S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37, 707–709 (2012). [CrossRef]
  64. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010). [CrossRef]
  65. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  66. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  67. R. K. Wang, I. A. Watson, and C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996). [CrossRef]
  68. Y. Li, K. Kreske, and J. Rosen, “Security and encryption optical systems based on a correlator with significant output images,” Appl. Opt. 39, 5295–5301 (2000). [CrossRef]
  69. H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg–Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34, 3917–3919 (2009). [CrossRef]
  70. H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011). [CrossRef]
  71. W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013). [CrossRef]
  72. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on phase retrieval combined with three-dimensional particle-like distribution,” J. Opt. 14, 075402 (2012). [CrossRef]
  73. W. Chen and X. Chen, “Optical image encryption based on multiple-region plaintext and phase retrieval in three-dimensional space,” Opt. Lasers Eng. 51, 128–133 (2013). [CrossRef]
  74. W. Chen and X. Chen, “Optical cryptography network topology based on 2D-to-3D conversion and phase-mask extraction,” Opt. Lasers Eng. 51, 410–416 (2013). [CrossRef]
  75. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008). [CrossRef]
  76. Y. Zhang, B. Wang, and Z. Dong, “Enhancement of image hiding by exchanging two phase masks,” J. Opt. A Pure Appl. Opt. 11, 125406 (2009). [CrossRef]
  77. B. Yang, Z. Liu, B. Wang, Y. Zhang, and S. Liu, “Optical stream-cipher-like system for image encryption based on Michelson interferometer,” Opt. Express 19, 2634–2642 (2011). [CrossRef]
  78. P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50, 1805–1811 (2011). [CrossRef]
  79. W. Chen and X. Chen, “Optical multiple-image encryption based on multiplane phase retrieval and interference,” J. Opt. 13, 115401 (2011). [CrossRef]
  80. X. Peng, H. Wei, and P. Zhang, “Asymmetric cryptography based on wavefront sensing,” Opt. Lett. 31, 3579–3581 (2006). [CrossRef]
  81. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010). [CrossRef]
  82. X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284, 148–152 (2011). [CrossRef]
  83. I. Mehra, S. K. Rajput, and N. K. Nishchal, “Collision in Fresnel domain asymmetric cryptosystem using phase truncation and authentication verification,” Opt. Eng. 52, 028202 (2013). [CrossRef]
  84. A. Alfalou and C. Brosseau, “Dual encryption scheme of images using polarized light,” Opt. Lett. 35, 2185–2187 (2010). [CrossRef]
  85. A. Alfalou, C. Brosseau, N. Abdallah, and M. Jridi, “Simultaneous fusion, compression, and encryption of multiple images,” Opt. Express 19, 24023–24029 (2011). [CrossRef]
  86. W. Chen, G. Situ, and X. Chen, “High-flexibility optical encryption via aperture movement,” Opt. Express 21, 24680–24691 (2013). [CrossRef]
  87. F. Mosso, J. F. Barrera, M. Tebaldi, N. Bolognini, and R. Torroba, “All-optical encrypted movie,” Opt. Express 19, 5706–5712 (2011). [CrossRef]
  88. C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett. 31, 2562–2564 (2006). [CrossRef]
  89. E. Rueda, C. Ríos, J. F. Barrera, and R. Torroba, “Master key generation to avoid the use of an external reference wave in an experimental JTC encrypting architecture,” Appl. Opt. 51, 1822–1827 (2012). [CrossRef]
  90. J. F. Barrera, M. Tebaldi, C. Ríos, E. Rueda, N. Bolognini, and R. Torroba, “Experimental multiplexing of encrypted movies using a JTC architecture,” Opt. Express 20, 3388–3393 (2012). [CrossRef]
  91. J. M. Vilardy, M. S. Millán, and E. Pérez-Cabré, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15, 025401 (2013). [CrossRef]
  92. F. Sadjadi and B. Javidi, Physics of the Automatic Target Recognition (Springer, 2007).
  93. M. S. Millán, E. Pérez-Cabré, and B. Javidi, “Multifactor authentication reinforces optical security,” Opt. Lett. 31, 721–723 (2006). [CrossRef]
  94. W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103, 221106 (2013). [CrossRef]
  95. A. Markman and B. Javidi, “Full-phase photon-counting double-random-phase encryption,” J. Opt. Soc. Am. A 31, 394–403 (2014). [CrossRef]
  96. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38, 546–548 (2013). [CrossRef]
  97. W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16, 025402 (2014). [CrossRef]
  98. A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6, 6800609 (2014). [CrossRef]
  99. S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874–888 (2003). [CrossRef]
  100. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited